Advertisement

Journal of Seismology

, Volume 18, Issue 2, pp 289–299 | Cite as

Field evidence of seismites in Quaternary deposits of the Jijel (Eastern Algeria) coastal region

  • A. Benhamouche
  • A. Nedjari
  • Y. Bouhadad
  • D. Machane
  • E. Oubaiche
  • N. Sidi Said
Original Article

Abstract

Jijel has been hit by a strong earthquake in 1856 that triggered a destructive tsunami. Field geological investigations show that the marine terrace deposits (Tyrrhenian or likely Eutyrrhenian) exhibit several types of soft sediment deformation features including sismoslumps, thixotropic bowls, thixotropic wedges, and diapir-like structures. In addition, paleo-liquefaction features represented by neptunian and injection dikes have been observed in the sand dune deposits (Aterian or Würm). Furthermore, typical paleo-earthquake-induced ground failures including lateral spreading, paleo-landslides, and sand volcanoes have been observed in recent, likely, Holocene deposits. Such features, remarkably comparable to present-day earthquake-induced ground failures showing clearly repetitive occurrence of past events may constitute a precious material for future paleo-seismic investigation. The various features have been interpreted herein as seismites associated to strong earthquakes produced likely by the potentially active faults previously identified in the area.

Keywords

Marine terrace Dune deposits Seismites Paleo-liquefaction Lateral spreading Sand volcanos Algeria 

References

  1. Alfaro P, Delgano J, Estevez A, Lopez-Casado C (2001) Paleo-liquefaction in the Bajo Segura basin (Eastern Betic Cordillera). Acta Geologica Hispanica 36(3–4):233–244Google Scholar
  2. Ambraseys NN (1982) The seismicity of Northern Africa: the earthquake of 1856 at Jijel, Algeria. Boll Geofis Teor Appl XXIV:31–37Google Scholar
  3. Ambraseys NN (1988) Engineering Seismology. Int J Earthquake Eng Struct Dyn 17:1–105CrossRefGoogle Scholar
  4. Aoudia A, Meghraoui M (1995) Seismotectonics in the Tell Atlas of Algeria: the Cavaignac (Abou-El-Hassan) earthquake of August 25, 1922 (M = 5.9). Tectonophysics 248:263–276CrossRefGoogle Scholar
  5. Argus DF, Gordon RG, De Mets C, Stein S (1989) Closure of the Africa–Eurasia–North America plate Motions circuit and tectonics of the glauria fault. J Geophys Res 94:5585–5602CrossRefGoogle Scholar
  6. Beaudoin B, Friès G (1982) Filons gréseux sédimentaires, perdescensum dans un système de fractures ouvertes. Le cas de l’Albien de Bevons (Alpes de Haute-Provence). C R Acad Sci 295:285–387Google Scholar
  7. Belabbes S, Meghraoui M, Cakir Z, Bouhadad Y (2009) InSAR analysis of the moderate size Ain Témouchent (Algeria) blind thrust earthquake (22/12/1999, Mw = 5.7. J Seismol. doi: 10.1007/10950-008-9135-x Google Scholar
  8. Benouar D (1994) Material for the investigation of the seismicity of Algeria and adjacent region during the twentieth century. Ann Geofis XXXVII(4):860Google Scholar
  9. Bezerra FHR, Da Fonseca VP, Vita-Finzi C, Lima-Filho FP, Saadi A (2005) Liquefaction-induced structures in Quaternary alluvial gravels and gravely sediments, NE Brazil. Eng Geol 76:191–208. doi: 10.1016/j.eng. geo.2004.07.007 CrossRefGoogle Scholar
  10. Bouhadad Y (2001) The Murdjadjo, western Algeria, fault-related fold: implications for seismic hazard. J Seismol 4:541–558CrossRefGoogle Scholar
  11. Bouhadad Y, Nour A, Slimani A, Laouami N, Belhai D (2004) The Boumerdes (Algeria) earthquake of May 21, 2003 Mw = 6.8: ground deformation and intensity. J Seismol 8:497–506. doi: 10.1007/s10950-004-4838-0 CrossRefGoogle Scholar
  12. Bouhadad Y, Benhamouche A, Maouche S, Belhai D (2009) Evidence for Quaternary liquefaction-induced features in the epicentral area of the 21 May 2003 Zemmouri earthquake (Algeria, Mw = 6.8). J Seismol. doi: 10.1007/s10950-008-9134-y Google Scholar
  13. Bouhadad Y, Benhammouche A, Bourenane H, Ait OA, Chikh M, Guessoum N (2010) The Laalam (Algeria) damaging landslide triggered by a moderate earthquake (Mw = 5.2). Journal. Nat Hazard 54:261–272CrossRefGoogle Scholar
  14. Boutiba M, et Guendouz M, Guettouche MS (2006) Evolution du littoral jijelien (Est-Algérie) à travers l’analyse sédimentologique des dépôts quaternaires. Bulletin du Service Géologique National 17:113–127Google Scholar
  15. Davenport, C.A. and Ringrose, P.S. (1987) Deformation of Scottish Quaternary sediment sequences by strong earthquake motions. In: Jones, M.E., Preston, V.I.F. (eds.) deformation of sediments and sedimentary rocks. Geol. Soc., Spec. Publ. 29:299–314Google Scholar
  16. Deverchère J, Yelles K, Domzig A, Mercier de Lépinay B, Bouillin JP, Gaullier V, Bracène R, Calais E, Savoye B, Kherroubi A, Le Roy P (2005) Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake. Geophys Res, Let 32:L04311CrossRefGoogle Scholar
  17. Durand Delga M, (1980) Méditerranée occidentale, étape de sa genèse et problèmes structuraux liés à celle-ci. Mém. Soc. Géol. France, 10Google Scholar
  18. Estevez A, Soria JM, Alfaro P (1994) Un nouveau type de séismites dans le Miocène supérieure d’alicante (Cordière bétique orientale, Espagne): les coins détritiques. CR Acad Sci Paris 318(série II):507–512Google Scholar
  19. Harbi A, Maouche S, Ayadi A (1999) Neotectonics and associate seismicity in the Eastern Tellian Atlas of Algeria. J Seismol 3:95–104CrossRefGoogle Scholar
  20. Harbi A, Meghraoui M, Maouche S (2011) The Djidjelli (Algeria) earthquakes of 21 and 22 August 1856 (Io = VIII, IX) and related tsunami effects Revisited. J Seismol 15(1):105–129CrossRefGoogle Scholar
  21. Hilly J, Morel J (1953) Découverte d’industries du Paléolithique inférieur dans le massif littoral du Cap de Fer et de l’Edough (département de Bône). Libyca, Anthropol.-Archéol. l Préhist III:229–261, 18 fig., AlgerGoogle Scholar
  22. Hilly J (1957) Etudes géologique du massif de l’Edough et du Cap de Fer (Est-Constantinois). Thèse Sc Nancy Mém Fasc 3–4:149–163Google Scholar
  23. Lowe DR (1976) Subaqueous liquefied and fluidized sediment flows and their deposits. Sedimentology 23:285–308CrossRefGoogle Scholar
  24. Machane D, Bouhadad Y, Cheiklounis G, Chatelain JL, Oubaiche EH, Abbes K, Guillier B, Bensalem R (2008) Examples of geological and geomorphological hazards in Algeria. Journal Natural Hazards 45:295–308CrossRefGoogle Scholar
  25. Maouche S, Morhange C, Meghraoui M (2009) Large boulders accumulation on the Algerian coast evidence tsunami events in the western Mediterranean. Mar Geol 262:96–104CrossRefGoogle Scholar
  26. Maouche S, Meghraoui M, Morhange C, Belabbes S, Bouhadad Y, Haddoum H (2011) Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics 509:69–80. doi: 10.1016/j.tecto.2011.06.003,  10.1016/j.tecto.2011.06.003#_blank CrossRefGoogle Scholar
  27. Marcos S, Stein M, Agnon A, Rond H (1996) Long-term earthquake clustering: a 50000 years paleoseismic record in the Dead Sea Graben. J Geophys Res 101:6179–6192CrossRefGoogle Scholar
  28. Meghraoui M, Cisternas A, Philip H (1986) Seismotectonics of the lower Chellif basin: structural background of the El Asnam (Algeria) earthquake. Tectonics 5:809–836CrossRefGoogle Scholar
  29. Meghraoui M (1988) Géologie des zones sismiques de l’Algérie du Nord: Paléosismologie, tectonique active et Synthèse sismotectonique. Thèse d’Etat, University Orsay-Paris XI, p. 356Google Scholar
  30. Meghraoui M, Maouche S, Chemaa B, Cakir Z, Aoudia A, Harbi A, Alasset PJ, Bouhadad Y, Benhamouda F (2004) Coastal uplift and thrust faulting associated with the (Mw = 6.8) Zemmouri (Algeria) earthquake of 21 May, 2003. Geophys Res Lett 31:L19605CrossRefGoogle Scholar
  31. Mokrane A, Ait Messaoud A, Sebai A, Menia N, Ayadi A and Bezzeghoud M (1994) In: Bezzeghoud, M and Benhallou, H. (eds)Les séismes en Algérie de 1365–1992, CRAAG, Alger. p. 227Google Scholar
  32. Montenat C, Barrier P, Ott d’Estevou P, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sediment Geol 196:5–30CrossRefGoogle Scholar
  33. Munson PJ, Munson CA, Pond EC (1995) Paleoliquefaction evidence for a strong Holocene earthquake in south-central Indiana. Geology 23(4):325–328. doi: 10.1130/0091-7613 CrossRefGoogle Scholar
  34. Nocquet JM, Calais E (2004) Geodetic measurements of crustal deformation in the western Mediterranean and Europe. Pure Appl Geopys 161:661–681CrossRefGoogle Scholar
  35. Obermeier SF (1996) Use of paleoliquefaction-induced features for paleoseismic analysis. An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44:1–76. doi: 10.1016/S0013-7952(96)00040-3 CrossRefGoogle Scholar
  36. Plaziat JC, Poisson AM (1992) Mise en évidence de plusieurs séismes majeurs dans le Stampien supérieur continental au Sud de Paris: enregistrement sédimentaire de la tectonique oligocène. Bull Soc Geol Fr 8:541–551Google Scholar
  37. Plaziat JC, Ahmamou M (1998) Les différents mécanismes à l’origine de la diversité des séismites, leur identification dans le Pliocène du Saïss de Fès et de Meknès (Maroc) et leur signification tectonique. Geodinamica Acta (Paris) 11:183–203CrossRefGoogle Scholar
  38. Rothé JP (1950) Les séismes de Kherrata et la séismicité de l’Algérie. Bull Ser De la carte géologique de L’Algérie 1950:16–17Google Scholar
  39. Roger J, Hebert H (2008) The 1856 Jijeli (Algeria) earthquake and tsunami: source parameters and implications for tsunami hazard in the Balearic Islands. Nat Hazards Earth Syst Sci 14:3–75Google Scholar
  40. Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13:15–159CrossRefGoogle Scholar
  41. Sims JD (1975) Determining earthquakes recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29:141–152CrossRefGoogle Scholar
  42. Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. 3: 663. Thèse, Université Paris VIGoogle Scholar
  43. Wildi W (1983) La chaîne tello-rifaine (Algérie–Maroc–Tunisie): structure, stratigraphie et évolution du Trias au Miocène. Revue de géol. Dynamique et de géographie physique 24(3):201–297Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre National de Recherche Appliquée en Génie Parasismique (CGS) 1AlgiersAlgeria
  2. 2.Laboratoire de Géodynamique des Bassins Sédimentaires et des OrogènesUniversité des Sciences et de la Technologie Houari Boumdiéne, Facutlé des Sciences de la Terre et de l’Aménagement du TerritoireAlgiersAlgeria

Personalised recommendations