Skip to main content

Advertisement

Log in

Shear wave velocity models retrieved using Rg wave dispersion data in shallow crust in some regions of southern Ontario, Canada

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Many crucial tasks in seismology, such as locating seismic events and estimating focal mechanisms, need crustal velocity models. The velocity models of shallow structures are particularly important in the simulation of ground motions. In southern Ontario, Canada, many small shallow earthquakes occur, generating high-frequency Rayleigh (Rg) waves that are sensitive to shallow structures. In this research, the dispersion of Rg waves was used to obtain shear-wave velocities in the top few kilometers of the crust in the Georgian Bay, Sudbury, and Thunder Bay areas of southern Ontario. Several shallow velocity models were obtained based on the dispersion of recorded Rg waves. The Rg waves generated by an m N 3.0 natural earthquake on the northern shore of Georgian Bay were used to obtain velocity models for the area of an earthquake swarm in 2007. The Rg waves generated by a mining induced event in the Sudbury area in 2005 were used to retrieve velocity models between Georgian Bay and the Ottawa River. The Rg waves generated by the largest event in a natural earthquake swarm near Thunder Bay in 2008 were used to obtain a velocity model in that swarm area. The basic feature of all the investigated models is that there is a top low-velocity layer with a thickness of about 0.5 km. The seismic velocities changed mainly within the top 2 km, where small earthquakes often occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Båth M (1974) Spectral analysis in geophysics. Elsevier, Amsterdam, p 563

  • Chourak M, Corchete V, Badal J, Serón FJ, Soria F (2003) Imaging of the near-surface shear-wave velocity structure of the Granada Basin (Southern Spain). Bull Seismol Soc Am 93(1):430–442

    Article  Google Scholar 

  • Corchete V, Chourak M, Hussein HM (2007) Shear wave velocity structure of the Sinai Peninsula from Rayleigh wave analysis. Surv Geophys 28:299–324

    Article  Google Scholar 

  • Dineva S, Eaton D, Ma S, Mereu R (2007) The October 2005 Georgian Bay (Canada) earthquake sequence: mafic dykes and their role in the mechanical heterogeneity of Precambrian crust. Bull Seismol Soc Am 97(2):457–473

    Article  Google Scholar 

  • Dziewonski A, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59(1):427–444

    Google Scholar 

  • Herrmann R, Ammon C (2002) Computer programs in seismology, version 3.30. Saint Louis University, Missouri

    Google Scholar 

  • Jamieson RA, Beaumont C, Nguyen MH, Culshaw NG (2007) Synconvergent ductile flow in variable-strength continental crust: numerical models with application to the western Grenville orogen. Tectonics 26. doi:10.1029/2006TC002036

  • Kafka AL, Reiter EC (1987) Dispersion of Rg waves in southeastern Maine: evidence for lateral anisotropy in the shallow crust. Bull Seismol Soc Am 77(3):925–941

    Google Scholar 

  • Kennett BLN (1983) Seismic wave propagation in stratified media. Cambridge University Press, Cambridge, pp 1–342

  • Ma S (2010) Focal depth determination for moderate and small earthquakes by modeling regional depth phases sPg, sPmP, and sPn. Bull Seismol Soc Am 100(3):1073–1088

    Article  Google Scholar 

  • Ma S, Eaton D (2009) Anatomy of a small earthquake swarm in southern Ontario, Canada. Seismol Res Lett 80:214–223

    Article  Google Scholar 

  • Ma S, Eaton D (2011) Combining double-difference relocation with regional depth-phase modelling to improve hypocentre accuracy. Geophys J Int. doi:10.1111/j.1365-246X.2011.04972

  • Ma S, Motazedian D (2011) Depth determination of small shallow earthquakes in eastern Canada from maximum power Rg/Sg spectral ratio. J Seismol 1–23. doi:10.1007/s10950-011-9252-9

  • Ma S, Motazedian D (2012) Studies on the June 23 2010 north Ottawa M W 5.2 earthquake and vicinity seismicity. J Seismol. doi:10.1007/s10950-012-9294-7

  • Randall G (1994) Efficient calculation of complete differential seismograms for laterally homogeneous earth models. Geophys J Int 118:245–254

    Article  Google Scholar 

  • Rodi WL, Glover P, Li TMC, Alexander SS (1975) A fast, accurate method for computing group-velocity partial derivatives for Rayleigh and Love modes. Bull Seismol Soc Am 65(5):1105–1114

    Google Scholar 

  • Stein S, Wysession M (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell, Malden

    Google Scholar 

  • Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull Seismol Soc Am 90(6):1353–1368

    Article  Google Scholar 

  • White DJ, Forsyth DA, Asudeh IA, Carr SD, Wu H, Easton RM, Mereu RF (2000) Seismic-based cross-section across the Grenville Front in Ontario. Can J Earth Sci 37(2–3):183–192

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada under the Strategic Research Networks and Discovery Grant programs. We gratefully acknowledge the constructive comments and suggestions from the Editor-in-Chief, T. Dahm, and reviewers. The seismograms and earthquake catalogs used in this article were retrieved from the Natural Resources Canada official website. The waveform records were processed using SAC2000, redseed and geotool programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Motazedian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, S., Motazedian, D. & Corchete, V. Shear wave velocity models retrieved using Rg wave dispersion data in shallow crust in some regions of southern Ontario, Canada. J Seismol 17, 683–705 (2013). https://doi.org/10.1007/s10950-012-9346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-012-9346-z

Keywords

Navigation