Advertisement

Journal of Seismology

, Volume 13, Issue 1, pp 53–72 | Cite as

Sensitivity analysis of the parameters of earthquake recurrence time power law scaling

  • Abdelhak Talbi
  • Fumio Yamazaki
Original article

Abstract

The stability of the power law scaling of earthquake recurrence time distribution in a given space–time window is investigated, taking into account the magnitude of completeness and the effective starting time of aftershock sequences in earthquake catalogs from Southern California and Japan. A new method is introduced for sampling at different distances from a network of target events. This method allows the recurrence times to be sampled many times on the same area. Two power laws with unknown exponents are assumed to govern short- and long-recurrence-time ranges. This assumption is developed analytically and shown to imply simple correlation between these power laws. In practice, the results show that this correlation structure is not satisfied for short magnitude cutoffs (m c = 2.5, 3.5, 4.5), and hence the recurrence time distribution departs from the power law scaling. The scaling parameters obtained from the stack of the distributions corresponding to different magnitude thresholds are quite different for different regions of study. It is also found that significantly different scaling parameters adjust the distribution for different magnitude thresholds. In particular, the power law exponents decrease when the magnitude cutoff increases, resulting in a slower decrease of the recurrence time distribution, especially for short time ranges. For example, in the case of Japan, the exponent p2 of the power law scaling at large recurrence times follows roughly the relation: \(p_2 \left( {m_c } \right)=-0.07m_c +2.7;m_c \ge 3.5\), where m c is the magnitude cutoff. In case of Southern California, it is shown that Weibull distribution provides a better alternative fit to the data for moderate and large time scales.

Keywords

Recurrence times Scaling Power laws Universality Magnitude of completeness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak P, Christensen K, Danon L, Scanlon T (2002) Unified scaling law for earthquakes. Phys Rev Lett 88:178501 doi:10.1103/PhysRevLett.88.178501 CrossRefGoogle Scholar
  2. Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73(3):831–851Google Scholar
  3. Carbone V, Sorriso-Valvo L, Harabaglia P, Guerra I (2005) Unified scaling law for waiting times between seismic events. Europhys Lett 71:1036–1042 doi:10.1209/epl/i2005-10185-0 CrossRefGoogle Scholar
  4. Christensen K, Danon L, Scanlon T, Bak P (2002) Unified scaling law for earthquakes. Proc Natl Acad Sci USA 99:2509–2513 doi:10.1073/pnas.012581099 CrossRefGoogle Scholar
  5. Corral A (2003) Local distributions and rate fluctuations in a unified scaling law for earthquakes. Phys Rev E Stat Nonlin Soft Matter Phys 68:035102 doi:10.1103/PhysRevE.68.035102 Google Scholar
  6. Corral A (2004a) Universal local versus unified global scaling laws in the statistics of seismicity. Physica A 340:590–597 doi:10.1016/j.physa.2004.05.010 CrossRefGoogle Scholar
  7. Corral A (2004b) Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. Phys Rev Lett 92 doi:10.1103/PhysRevLett.92.108501
  8. Corral A (2007) Statistical features of earthquake temporal occurrence. Lecture notes in physics 705: 191–221, Springer, Berlin Heidelberg doi:10.1007/3-540-35375-5_8 CrossRefGoogle Scholar
  9. Corral A, Christensen K (2006) Comment on earthquakes descaled: on waiting time distributions and scaling laws. Phys Rev Lett 96:109801 doi:10.1103/ PhysRevLett.96.109801 CrossRefGoogle Scholar
  10. Cox DR, Isham V (1980) Point processes. Chapman and Hall, LondonGoogle Scholar
  11. Daley DJ, Vere-Jones D (1988) An introduction to the theory of point processes. Springer, New YorkGoogle Scholar
  12. Davidsen J, Goltz C (2004) Are seismic waiting time distributions universal? Geophys Res Lett 31(21):L21612 doi:10.1029/2004GL020892 CrossRefGoogle Scholar
  13. Gardner JK, Knopoff L (1974) Is the sequence of aftershocks in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367Google Scholar
  14. Hainzl S, Scherbaum F, Beauval C (2006) Estimating background activity based on interevent-time distribution. Bull Seismol Soc Am 96(1):313–320 doi:10.1785/0120050053 CrossRefGoogle Scholar
  15. Helmstetter A, Kagan YY, Jackson DD (2006) Comparison of short-term and time-independent earthquake forecast models for Southern California. Bull Seismol Soc Am 96(1):90–106 doi:10.1785/0120050067 CrossRefGoogle Scholar
  16. Kagan YY (2004) Short-term proprieties of earthquake catalogs and models of earthquake source. Bull Seismol Soc Am 94(4):1207–1228 doi:10.1785/012003098 CrossRefGoogle Scholar
  17. Kagan YY, Jackson DD, Rong YF (2006) A new catalog of Southern California earthquakes, 1800–2005. Seismol Res Lett 77(1):30–38 doi:10.1785/gssrl.77.1.30 CrossRefGoogle Scholar
  18. Knopoff L (2000) The magnitude distribution of declustered earthquakes in Southern California. Proc Natl Acad Sci USA 97(22):11880–11884 doi:10.1073/pnas.190241297 CrossRefGoogle Scholar
  19. Lindman M, Jonsdottir K, Roberts R, Lund B, Bodvarsson R (2005) Earthquakes descaled: on waiting time distributions and scaling laws. Phys Rev Lett 94:108501 doi:10.1103/ PhysRevLett.94.108501 CrossRefGoogle Scholar
  20. Lindman M, Jonsdottir K, Roberts R, Lund B, Bodvarsson R (2006) Earthquakes descaled: on waiting time distributions and scaling laws. Phys Rev Lett 96:109802. doi:10.1103/PhysRevLett.96.109802 Reply CrossRefGoogle Scholar
  21. Molchan G (2005) Interevent time distribution in seismicity: a theoretical approach. Pure Appl Geophys 162:1135–1150 doi:10.1007/s00024-004-2664-5 CrossRefGoogle Scholar
  22. Molchan G, Kronrod T (2007) Seismic interevent time: a spatial scaling and multifractality. Pure Appl Geophys 164:75t96 doi:10.1007/s00024-006-0150-y CrossRefGoogle Scholar
  23. Newman W, Turcotte DL, Shcherbakov R, Rundle JB (2005) Why Weibull? In: Abstracts of the American Geophysical Union fall meeting, San Francisco, California, 59 December 2005Google Scholar
  24. Ogata Y (1988) Statistical models for earthquakes occurrences and residual analysis for point processes. J Am Stat Assoc 83(401):9–27 doi:10.2307/2288914 CrossRefGoogle Scholar
  25. Saichev A, Sornette D (2006) Universal distribution of interearthquake times explained. Phys Rev Lett 97:078501 doi:10.1103/PhysRevLett.97.078501 CrossRefGoogle Scholar
  26. Saichev A, Sornette D (2007) Theory of earthquake recurrence times. J Geophys Res 112:B04313 doi:10.1029/2006JB004536 CrossRefGoogle Scholar
  27. Stepp JC (1971) An investigation of earthquake risk in the Puget Sound area by use of the of the type 1 distribution of largest extremes. Ph. D. Thesis, State University of PennsylvaniaGoogle Scholar
  28. Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of the international conference on microzonation, vol 2, pp. 897–910. Seattle, WAGoogle Scholar
  29. Talbi A, Yamazaki F (2007) Earthquake waiting time distribution: modeling and scaling law. In: Abstracts of Japan geosciences union meeting, Chiba, Japan, 1924 May 2007Google Scholar
  30. Turcotte DL, Abaimov SG, Shcherbakov R, Rundle JB (2007) Nonlinear dynamics of natural hazards. In: Tsonis AA, Elsner JB (eds) Nonlinear dynamics in geosciences. Springer, New York, pp 557–580 doi:10.1007/978-0-387-34918-3_30 CrossRefGoogle Scholar
  31. Weibull W (1951) A statistical distribution of wide applicability. J Appl Mech 18(3):293–297Google Scholar
  32. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70(4):1337–1346Google Scholar
  33. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull Seismol Soc Am 90(4):859–869 doi:10.1785/0119990114 CrossRefGoogle Scholar
  34. Yakovlev G, Turcotte DL, Rundle JB, Rundle PB (2006) Simulation-based distributions of earthquake recurrence times on the San Andreas Fault system. Bull Seismol Soc Am 96(6):1995–2007 doi:10.1785/0120050183 CrossRefGoogle Scholar
  35. Zoller G, Hainzl S (2007) Recurrence time distributions of large earthquakes in a stochastic model for coupled fault systems: the role of fault interaction. Bull Seismol Soc Am 97(5):1679–1687. doi:10.1785/0120060262 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Urban Environment System, Graduate School of EngineeringChiba UniversityChibaJapan

Personalised recommendations