Journal of Seismology

, Volume 10, Issue 2, pp 225–236 | Cite as

Empirical Global Relations Converting MS and mb to Moment Magnitude

Article

Abstract

The existence of several magnitude scales used by seismological centers all over the world and the compilation of earthquake catalogs by many authors have rendered globally valid relations connecting magnitude scales a necessity. This would allow the creation of a homogeneous global earthquake catalog, a useful tool for earthquake research. Of special interest is the definition of global relations converting different magnitude scales to the most reliable and useful scale of magnitude, the moment magnitude, MW. In order to accomplish this, a very large sample of data from international seismological sources (ISC, NEIC, HRVD, etc.) has been collected and processed. The magnitude scales tested against MW are the surface wave magnitude, MS, the body wave magnitude, mb, and the local magnitude, ML. The moment magnitudes adopted have been taken from the CMT solutions of HRVD and USGS. The data set used in this study contains 20,407 earthquakes, which occurred all over the world during the time period 1.1.1976–31.5.2003, for which moment magnitudes are available. It is shown that well-defined relations hold between MW and mb and MS and that these relations can be reliably used for compiling homogeneous, with respect to magnitude, earthquake catalogs.

Keywords

magnitude scales moment magnitude global empirical relations homogeneous catalogs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, K., 1981, Magnitudes of large shallow earthquakes from 1904 to 1980, Phys. Earth Planet. Int. 27, 72–92.CrossRefGoogle Scholar
  2. Anderson, J.A. and Wood, H.O., 1924, A torsion seismometer, J. Opt. Soc. Am. Rev. Sci. Inst. 8, 817–822.CrossRefGoogle Scholar
  3. Anderson, J.A. and Wood, H.O., 1925, Description and theory of the torsion seismometer, Bull. Seism. Soc. Am. 15, 1–72.Google Scholar
  4. Christoskov, L., Kondorskaya, N.V. and Vanek, J., 1985, Magnitude calibrating functions for a multidimensional homogeneous system of reference stations, Tectonophysics 118, 213–226.CrossRefGoogle Scholar
  5. Dziewonski, A.M., Chou, T.A. and Woodhouse, J.H., 1981, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res. 86(2), 825–852.CrossRefGoogle Scholar
  6. Giardini, D., 1984, Systematic analysis of deep seismicity – 200 centroid-moment tensor solutions for earthquakes between 1977 and 1980, J.R. Geoph. Astr. Soc. 77, 883–914.Google Scholar
  7. Grünthal, G. and Wahlström, R., 2003, An M W based earthquake catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions, J. Seismol. 7(4), 507–531.CrossRefGoogle Scholar
  8. Gutenberg, B., 1945a, Amplitudes of surface waves and magnitudes of shallow earthquakes, Bull. Seism. Soc. Am. 35, 3–12.Google Scholar
  9. Gutenberg, B., 1945b, Amplitude of P, PP, and S and magnitudes of shallow earthquakes, Bull. Seism. Soc. Am. 35, 57–69.Google Scholar
  10. Gutenberg, B., 1945c, Magnitude determination for deep-focus earthquakes, Bull. Seism. Soc. Am. 35, 117–130.Google Scholar
  11. Gutenberg, B. and Richter, C.F., 1956, Magnitude and energy of earthquakes, Ann. Geofis. 9, 1–15.Google Scholar
  12. Hanks, T. and Kanamori, H., 1979, A moment magnitude scale, J. Geophys. Res. 84, 2348–2350.CrossRefGoogle Scholar
  13. Harvard Seismology (HRVD), 2004, CMT catalogue, http://www.seismology.harvard.edu/CMTsearch.html
  14. Heaton, T., Tajima, F. and Mori, A., 1986, Estimating ground motions using recorded accelerograms, Surv. Geophys. 8, 25–83.CrossRefGoogle Scholar
  15. Herak, M. and Herak, D., 1993, Distance dependence of M S and calibrating function for 20-second Rayleigh waves, Bull. Seism. Soc. Am. 83, 1881–1892.Google Scholar
  16. International Seismological Centre (ISC), 2004, On-line {Bulletin}, Internat. Seis. Cent., Thatcham, United Kingdom, http://www.isc.ac.uk/Bull.
  17. Johnston, A. C., 1996, Seismic moment assessment of earthquakes in stable continental regions – I. Instrumental seismicity, Geophys. J. Int. 124, 381–414.CrossRefGoogle Scholar
  18. Kanamori, H., 1977, The energy release in great earthquakes, J. {Geophys.} Res. 82, 2981–2987.CrossRefGoogle Scholar
  19. Kanamori, H., 1983, Magnitude scale and quantification of earthquakes, Tectonophysics 93, 185–199.CrossRefGoogle Scholar
  20. Karnik, V., 1968, Seismicity of the European area, Part 1, { Academia Prague and Reidel Dordrecht}.Google Scholar
  21. Karnik, V., 1971, Seismicity of the European area, Part 2, { Academia Prague and Reidel Dordrecht}.Google Scholar
  22. Karnik, V., 1973, Magnitude differences, Pure Appl. Geophys. 103(II) 362–369.Google Scholar
  23. Karnik, V., 1996, Seismicity of Europe and the Mediterranean. In: Klima, K. (ed.), Academy of Sciences of the Czech Republic, Geophysical Institute, 28 pp. plus earthquake catalogue.Google Scholar
  24. Kim, W.-Y., Wahlström, R. and Uski, M., 1989, Regional spectral scaling relations of source parameters for earthquakes in the Baltic Shield, Tectonophysics 166, 151–161.CrossRefGoogle Scholar
  25. Kiratzi, A.A., 1984, Magnitude scales for earthquakes in the broader Aegean area, Ph.D. Thesis, Aristotle University of Thessaloniki, 189 pp.Google Scholar
  26. Kiratzi, A.A. and Papazachos, B.C., 1984, Magnitude scales for earthquakes in Greece, Bull. Seism. Soc. Am. 74, 969–985.Google Scholar
  27. Kiratzi, A.A., Karakaisis, G.F., Papadimitriou, E.E. and Papazachos, B.C., 1985, Seismic source-parameter relations for earthquakes in Greece, Pure Appl. Geophys. 123, 27–41.CrossRefGoogle Scholar
  28. Margaris, B.N. and Papazachos, C.B., 1999, Moment-magnitude relations based on strong-motion records in Greece, Bull. Seism. Soc. Am. 89, 442–455.Google Scholar
  29. Murphy, J.R., Stevens, J.L., Bennett, T.J., Barker, B.W. and {Marshall,} M.E., 2001, Development of improved seismic magnitude measures for use at the International Data Center, Final technical report, 135pp.Google Scholar
  30. Murphy, J.R. and Barker, B.W., 2003, Revised distance and depth corrections for use in the estimation of short-period P-wave magnitudes, Bull. Seism. Soc. Am. 93, 1746–1764.CrossRefGoogle Scholar
  31. National Earthquake Information Center (NEIC), 2004, On-line {Bulletin,} USGS/NEIC (PDE) 1973 – Present, http://neic.usgs.gov/.Google Scholar
  32. Nuttli, O.W., 1983, Average seismic source parameter relations for mid-plate earthquakes, Bull. Seism. Soc. Am. 73, 519–535.Google Scholar
  33. Nuttli, O.W., 1985, Average seismic source-parameter relations for plate-margin earthquakes, Tectonophysics 118, 161–174.CrossRefGoogle Scholar
  34. Nuttli, O.W. and Kim, S.G., 1975, Surface-wave magnitudes of Eurasian earthquakes and explosions, Bull. Seism. Soc. Am. 65, 693–709.Google Scholar
  35. Panza, G.F., Duda, S.J., Cernobori, L. and Herak, M., 1989, Gutenberg's surface-wave magnitude calibrating function: Theoretical basis from synthetic seismograms, Tetonophysics 166, 35–43.CrossRefGoogle Scholar
  36. Papanastasiou, D., 1989, Detectability and accuracy of local parameters determination by the seismographic network of the National Observatory of Athens., Ph.D. Thesis, Univ. of Athens, 225 pp.Google Scholar
  37. Papazachos, B.C., Kiratzi, A.A. and Karakostas, B.G., 1997, Toward a homogeneous moment-magnitude determination for earthquakes in Greece and surrounding area, Bull. Seism. Soc. Am. 87, 474–483.Google Scholar
  38. Papazachos, B.C., Karakostas, V.G., Kiratzi, A.A., Margaris, B.N., Papazachos, C.B. and Scordilis, E.M., 2002, Uncertainties in the estimation of earthquake magnitudes in Greece, J. Seismol. 6, 557–570.CrossRefGoogle Scholar
  39. Patton, H.J. and Walter, W.R., 1993, Regional moment: Magnitude relations for earthquakes and explosions, Geoph. Rec. Lett. 20(4), 277–280.Google Scholar
  40. Patton, H.J. and Walter, W.R., 1994, Erratum: “Regional moment: Magnitude relations for earthquakes and explosions” [Geophysical Research Letters, 20, 277–280 (1993)], Geoph. Rec. Lett. 21(8), 743–743.Google Scholar
  41. Patton, H.J. and Randall, G.E., 2002, On the causes of biased estimates of seismic moment for earthquakes in central Asia, J. Geophys. Res. 107(B11), 2302.Google Scholar
  42. Rezapour, M. and Pearce, R.G., 1998, Bias in surface-wave magnitude M S due to inadequate distance, Bull. Seism. Soc. Am. 88, 43–61.Google Scholar
  43. Richter, C., 1935, An instrumental earthquake magnitude scale, Bull. Seism. Soc. Am. 25, 1–32.Google Scholar
  44. Scordilis, E., 1985, A microseismicity study of the Serbomacedonian massif and the surrounding area, Ph.D. Thesis, University of Thessaloniki, 250 pp.Google Scholar
  45. Shedlock, K.M., 1999, Seismic hazard map of North and Central America and the Caribbean, Ann. Geofis. 42, 977–997.Google Scholar
  46. Thomas, J.H., Marshall, P.D. and Douglas, E., 1978, Rayleigh-wave amplitudes from earthquakes in range 0–150 degrees, Bull. Seism. Soc. Am. 53, 191–200.Google Scholar
  47. Uhrhammer, R. and Collins, E., 1990, Synthesis of Wood Asnderson seismograms from broadband digital records, Bull. Seism. Soc. Am. 80, 702–716.Google Scholar
  48. Uhrhammer, R.A., Loper, S.J. and Romanowicz, B., 1996, Determination of local magnitude using BDSN broadband records, Bull. Seism. Soc. Am. 86, 1314–1330.Google Scholar
  49. United States Geological Survey – Source Parameter Database (2004), http://neic.usgs.gov/neis/soparGoogle Scholar
  50. Utsu, T., 2002, Relationships between magnitude scales, {International} Handbook of Earthquake and Engineering Seismology 81, 733–746.CrossRefGoogle Scholar
  51. Vanek, J., Zatopek, A., Karnik, V., Kondorskaya, N.V., Riznichenko, Y.V., Savarensky, E.F., Soloviev, S.L. and Shebalin, N.V., 1962, Standardization of magnitude scales, Bull. Acad. Sci. USSR {Geophys.} Ser. 108–111.Google Scholar
  52. Veith, K.F. and Clawson, G.E., 1972, Magnitude from short-period P-wave data, Bull. Seism. Soc. Am. 62, 435–452.Google Scholar
  53. Wahlström, R. and Grünthal, G., 2000, Probabilistic seismic hazard assessment (horizontal PGA) for Sweden, Finland and Denmark using different logic tree approaches, Soil Dyn. Earthq. Engrg. 20, 45–58.CrossRefGoogle Scholar
  54. Wessel, P. and Smith, W.H.F., 1995, New version of Generic Mapping Tools Released, EOS 76, 697–723.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Geophysics, School of GeologyAristotle UniversityThessalonikiGreece

Personalised recommendations