Deformation and stress regimes in the Hellenic subduction zone from focal Mechanisms

Abstract

Fault plane solutions for earthquakes in the central Hellenic arc are analysed to determine the deformation and stress regimes in the Hellenic subduction zone in the vicinity of Crete. Fault mechanisms for earthquakes recorded by various networks or contained in global catalogues are collected. In addition, 34 fault plane solutions are determined for events recorded by our own local temporary network on central Crete in 2000–2001. The entire data set of 264 source mechanisms is examined for types of faulting and spatial clustering of mechanisms. Eight regions with significantly varying characteristic types of faulting are identified of which the upper (Aegean) plate includes four. Three regions contain interplate seismicity along the Hellenic arc from west to east and all events below are identified to occur within the subducting African lithosphere. We perform stress tensor inversion to each of the subsets in order to determine the stress field. Results indicate a uniform N-NNE direction of relative plate motion between the Ionian Sea and Rhodes resulting in orthogonal convergence in the western forearc and oblique (40–50) subduction in the eastern forearc. There, the plate boundary migrates towards the SE resulting in left-lateral strike-slip faulting that extends to onshore Eastern Crete. N110E trending normal faulting in the Aegean plate at this part is in accordance with this model. Along-arc extension is observed on Western Crete. Fault plane solutions for earthquakes within the dipping African lithosphere indicate that slab pull is the dominant force within the subduction process and responsible for the roll-back of the Hellenic subduction zone.

This is a preview of subscription content, log in to check access.

References

  1. Angelier, J., Lyberis, N., LePichon, X. and Barrier, E., 1982, The tectonic development of the Hellenic arc and the sea of Crete: A synthesis, Tectonophysics 86, 159–196.

    Google Scholar 

  2. Bath, M., 1983, The seismology of Greece, Tectonophysics 98, 165–208.

    Google Scholar 

  3. Becker, D., 2000, Mikroseismizität und Deformation der Kruste Ostkretas, Germany, Master thesis, Faculty of Geosciences, Hamburg University (in German).

  4. Benetatos, C., Kiratzi, A., Papazachos and C. Karakaisis, G., 2004, Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc, J. of Geodyn. 37, 253–296.

    Google Scholar 

  5. Bijwaard, H. and Spakman, W., 1998, Closing the gap regional and global travel time tomography, J. Geophys. Res. 103, 30055–30078.

    Article  Google Scholar 

  6. Bohnhoff, M., Baisch, S. and Harjes, H.-P., 2004, Focal mechanisms of induced seismicity at the superdeep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field, J. Geophys. Res. 109, B02309, doi:10.1029/2003JB002528.

  7. Bohnhoff, M., Makris, J., Papanikolaou, D. and Stavrakakis, G., 2001, Crustal investigation of the Hellenic subduction zone using wide aperture seismic data, Tectonophysics 343, 239–262.

    Article  Google Scholar 

  8. Brönner, M., 2003, Untersuchungen des Krustenaufbaus entlang des Mediterranen Rückens abgeleitet aus geophysikalischen Messungen, PhD thesis, Faculty of Geosciences, Hamburg University (in German).

  9. Christova, C., Scholz, C.H. and Kao, H., 2004, Stress field in the Vanuatu (New Hebrides) Wadati-Benioff zone inferred by inversion of earthquake focal mechanisms: Evidence for systematic lateral and vertical variations of principal stresses, J. Geodyn. 37, 125–137.

    Article  Google Scholar 

  10. Comte, D., Haessler, H., Dorbath, L., Pardo, M., Monfred, T., Lavenn, A., Pontoise, B. and Hello, Y., 2002, Seismicity and stress distribution in the Copiapo, northern Chile, subduction zone using combined on- and offshore seismic observations, Phys. Earth Planet. Sci. Int. 132, 197–217.

    Google Scholar 

  11. DeChabalier, J.B., Lyon-Caen, H., Zollo, A., Deschamps, A., Bernard, P. and Hatzfeld, D., 2002, A detailed analysis of microearthquakes in western Crete from digital three-component seismograms, Geophys. J. Int. 110, 347–360.

    Google Scholar 

  12. Delibasis, N., Ziazia, M., Voulgaris, N., Papadopoulos, T., Stavrakakis, G., Papanastassiou, D. and Drakatos, G., 1999, Microseismic activity and seismotectonics of Heraklion Area (central Crete Island, Greece), Tectonophysics 308, 237–248.

    Article  Google Scholar 

  13. Doutsos, T. and Kokkalas, S., 2001, Stress and deformation patterns in the Aegean region, J. Struct. Geol. 23, 455–472.

    Google Scholar 

  14. Endrun, B., Meier, T., Bischoff, M. and Harjes, H.-P., 2004, Lithospheric structure in the area of Crete constrained by receiver functions and dispersion analysis of Rayleigh phase velocities, Geophys. J. Int. 158, 592–608.

    Article  Google Scholar 

  15. Engdahl, E.R., van der Hilst, R. and Buland, R., 1998, Global teleseismic earthquake relocation with improved travel times and procedures for depth determination Bull. Seis. Soc. Am. 88, 722–743.

    Google Scholar 

  16. Gephart, J.W., 1990, Stress and the direction of slip on fault planes, Tectonics 9, 845–858.

    Google Scholar 

  17. Gephart, J.W. and Forsyth, D.W., 1984, An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence, J. Geophys. Res. 89, 9305–9320.

    Google Scholar 

  18. Hanka, W. and Kind, R., 1994, The GEOFON Program, Ann. Geofis. 37, 1060–1065.

    Google Scholar 

  19. Hatzfeld, D., Besnard, M., Makropoulos, K. and Hatzidimitriou, P., 1993a, Microearthquake seismicity and fault-plane solutions in the southern Aegean and its geodynamic implications, Geophys. J. Int. 115, 799–818.

    Google Scholar 

  20. Hatzfeld, D. et al., 1993b, Subcrustal microearthquake seismicity and fault plane solutions beneath the Hellenic arc, J. Geophys. Res., 98(B6), 9861–9870.

    Google Scholar 

  21. Huchon, P., Lyberis, N., Angelier, J., LePichon, X and Renard, V., 1982, Tectonic of the Hellenic Trench: A synthsis of Sea-Beam and submersible observations, Tectonophysics 86, 69–211.

    Article  Google Scholar 

  22. Huguen, C., Mascle, J., Chaumillon, E., Woodside, J.M., Benkhelil, J., Kopf, A. and Volksonkaia, A., 2001, Deformation styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling, Tectonophysics 343, 21–47.

    Article  Google Scholar 

  23. Isacks, B. and Molnar, P., 1971, Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes, Rev. Geophys. Space Phys. 9(1) 103–174.

    Google Scholar 

  24. Jackson, J. and McKenzie, D.P., 1988, The relationship between plate motion and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East, Geophys. J. 93, 45–73.

    Google Scholar 

  25. Jost, M.L., Knabenbauer, O., Cheng, J. and Harjes, H.-P., 2002, Fault plane solutions of microearthquakes and small events in the Hellenic arc, Tectonophysics 356, 87–114.

    Article  Google Scholar 

  26. Kiratzi, A. and Louvari, E., 2003, Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: A new database, J. Geod. 36, 251–274.

    Google Scholar 

  27. Knapmeyer, M., 1999, Geometry of the Aegean Benioff zone, Ann. Geofis. 42, 27–38.

    Google Scholar 

  28. Lambeck, K., 1995, Late Pleisocene and Holocene sea-level change in Greece and southwestern Turkey: A separation of eustatic, isostatic and tectonic contributions, Geophys. J. Int. 122, 1022–1044.

    Google Scholar 

  29. LePichon, X. and Angelier, J., 1979, The Hellenic arc and trench system: A key to the neotectonic evolution of the Eastern Mediterranean area, Tectonophysics 60, 1–42.

    Google Scholar 

  30. LePichon, X., Chamot-Rooke, N. and Lallemant, S., 1995, Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for Eastern Mediterranean tectonics, J. Geophys. Res. 100, 12675–12690.

    Google Scholar 

  31. Li, X., Bock, G. Vafidis, A., Kind, R., Harjes, H.-P., Hanka, W., Wylegalla, K., Meijde, M.v.d. and Yuan, X., 2003, Receiver function study of the Hellenic subduction zone: Imaging crustal thickness variations and the oceanic Moho of the descending African lithosphere, Geophys. J. Int. 155, 733–748.

    Article  Google Scholar 

  32. Lu, Z., Wyss, M. and Pulpan, H., 1997, Details of stress directions in the Alaska subduction zone from fault plane solutions, J. Geophys. Res. 102(B3), 5385–5402.

    Article  Google Scholar 

  33. Lyon-Caen, H., et al., 1988, The 1986 Kalamata (south Peloponnesus) earthquake: Detailed study of a normal fault, evidences for east-west extension in the Hellenic arc, J. Geophys. Res. 93, 14967–15000.

    Google Scholar 

  34. Makropoulos, K.C. and Burton, P.W., 1981, A catalogue of seismicity in Greece and adjacent areas, Geophys. J. R. Astron. Soc. 65, 741–762.

    Google Scholar 

  35. Marone, F., Meijde, M.v.d., Lee, S.v.d. and Giardini, D., 2003, Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary region, Geophys. J. Int. 154, 499–514.

    Article  Google Scholar 

  36. Mascle, J., et al., 1999, Images may show start of European-African plate collision, EoS Transactions 80 (37), American Geophysical Union, 421–428.

  37. McClusky, S. et al., 2000, Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res. 105, 5695–5719.

    Article  Google Scholar 

  38. McGinty, P., Reyners, M. and Robinson, R., 2000, Stress directions in the shallow part of the Hikurangi subduction zone, New Zealand, from the inversion of earthquake first motions, Geophys. J. Int. 142, 339–350.

    Article  Google Scholar 

  39. McKenzie, D.P., 1970, Plate tectonics of the mediterranean region, Nature 226, 239–243.

    Google Scholar 

  40. McKenzie, D.P., 1972, Active tectonics of the mediterranean region, Geophys. J. R. Astr. Soc. 30, 109–185.

    Google Scholar 

  41. McKenzie, D.P., 1978, Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions, Geophys. J. R. astron. Soc. 55, 217–254.

    Google Scholar 

  42. Meier, T., Dietrich, K., Stöckhert, B. and Harjes, H.-P., 2004a, One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Geophys. J. Int. 156, 45–58.

    Article  Google Scholar 

  43. Meier, T., Rische, M., Endrun, B., Vafidis, A. and Harjes, H.-P., 2004b, Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks, Tectonophysics 383, 149–169.

    Article  Google Scholar 

  44. Meijer, P.Th. and Wortel, M.J.R., 1996, Temporal variation in the stress field of the Aegean region, Geophys. Res. Lett. 23(5), 439–442.

    Article  Google Scholar 

  45. Meulenkamp, J.E., Wortel, M.J.R., VanWamel, W.A., Spakman and Hoogerduyn Strating, E., 1988, On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene, Tectonophysics 146, 203–215.

    Article  Google Scholar 

  46. Michael, A.J., 1984, Determination of stress from slip data; faults and folds, J. Geophys. Res. 89, 11517–11526.

    Google Scholar 

  47. Michael, A.J., 1987, Use of focal mechanisms to determine stress: A control study, J. Geophys. Res. 92(B1), 357–368.

    Article  Google Scholar 

  48. Michael, A.J., 1991, Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: New techniques and results, J. Geophys. Res. 96, 6303–6319.

    Google Scholar 

  49. Papadimitriou, E., 1993, Focal mechanisms along the convex side of the Hellenic arc, Bollettino de Geofisica Teorica et Applicata XXXV, 401–426.

    Google Scholar 

  50. Papadopoulos, G.A., Kondopoulou, D., Leventakis, G.-A. and Pavlides, S., 1986, Seismotectonics of the Aegean region, Tectonophysics 124, 67–84.

    Article  Google Scholar 

  51. Papazachos, B.C., 1973, Distribution of seismic foci in the Mediterranean and surrounding area and its tectonic implications, Geophys. J.R. Astron. Soc. 33, 421–430.

    Google Scholar 

  52. Papazachos, B.C. and Papazachou, C.B., 1997, The earthquakes of Greece, Ziti (ed.), Technical books editions, Thessaloniki, 304 pp.

  53. Papazachos, B.C., Kiratzi, A. and Papadimitriou, E., 1991, Regional Focal Mechanisms for Earthquakes in the Aegean Area, PAGEOPH 126(4), 405–420.

    Google Scholar 

  54. Papazachos, B.C., Karakostas, V.G., Papazachos, C.B. and Scordilis, E.M., 2000, The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc, Tectonophysics 319, 275–300.

    Article  Google Scholar 

  55. Snoke, J.A., 2003, FOCMEC: Focal Mechanism determinations, International Handbook of Earthquake and Engineering Seismology, W.H.K. Lee, H. Kanamori, P.C. Jennings and Kisslinger, C. (eds.), Academic Press, San Diego, Chapter 85.12.

    Google Scholar 

  56. Snoke, J.A., Munsay, J.W., Teague, A.G. and Bollinger, G.A., 1984, A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data, EQ Notes 55(3), 15.

    Google Scholar 

  57. Spakman, W., Wortel, M.J.R. and Vlaar, N.J., 1988, The Hellenic subduction zone: A tomographic image and its geodynamic implication, Geophys. Res. Lett. 15, 60–63.

    Google Scholar 

  58. Taymaz, T., Jackson, J. and Westaway, R., 1990, Earthquake mechanisms in the Hellenic trench near Crete, Geophys. J. Int. 102, 695–731.

    Google Scholar 

  59. TenVeen, J.H., 2004, Extension of Hellenic forearc shear zones in SW Turkey: The Pliocene-Quartenary deformation of the Esen Cay Basin, J. Geodyn. 37, 181–204.

    Article  Google Scholar 

  60. TenVeen, J.H. and Kleinspehn, K.L., 2003, Incipient continental collision and plate-boundary curvature: Late Pliocene-Holocene transtensional Hellenic forearc, Crete, Greece, J. Geol. Soc. London 160, 161–181.

    Google Scholar 

  61. Truffert, C., Chamot-Rouke, N., Lallemant, S., DeVoogd, B., Huchon, P. and LePichon, X., 1993, The crust of the western Mediterranean Ridge from deep seismic data and gravity modelling, Geophys. J. Int. 114, 360–372.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Bohnhoff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bohnhoff, M., Harjes, H. & Meier, T. Deformation and stress regimes in the Hellenic subduction zone from focal Mechanisms. J Seismol 9, 341–366 (2005). https://doi.org/10.1007/s10950-005-8720-5

Download citation

Keywords

  • Crete
  • Hellenic subduction zone
  • fault plane solutions
  • seismotectonics
  • deformation regime
  • stress tensor inversion