Skip to main content
Log in

Ferrimagnetic Rectangular and Hexagonal Nanoribbons Under an Applied Transverse Magnetic Field

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

An upsurge of research activities is conducted to assess the magnetic properties of graphene nanoribbons with a keen focus on spintronic applications. The critical and compensation characteristics of mixed spin-3/2 and spin-1/2 Ising nanoribbons (Nrbs) with rectangular and hexagonal shapes under a transverse field are explored employing the finite cluster approximation. In the absence of transverse fields, only the rectangular Nrb, may exhibit one or two compensation points. This compensation persists under a transverse field Ωσ that exclusively affects the spin-1/2 of the σ-sublattice, where the order is destroyed at some Jσ-dependent critical transverse fields at T = 0. Interestingly, the insertion of a transverse field ΩS acting only on the S-sublattice, demonstrates that the order cannot be destroyed at low temperatures, with the possibility of reentrance as well as tricritical behaviors for rectangular Nrb. Finally, all these behaviors have been confirmed through an analysis of the magnetizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Faccio, R., et al.: J. Phys. Condens. Matter 21, 285304 (2009)

    Article  Google Scholar 

  2. Bu, H., Chen, Y., Zou, M., Yi, H., Bi, K., Ni, Z.: Phys. Lett. A 373, 3359 (2009)

    Article  ADS  Google Scholar 

  3. Yazyev, O.V.: Acc. Chem. Res. 46, 2319 (2013)

    Article  Google Scholar 

  4. Houtsma, R.S.K., de la Rie, J., Stöhr, M.: Chem. Soc. Rev. 50, 6541 (2021)

    Article  Google Scholar 

  5. Prezzi, D., Varsano, D., Ruini, A., Marini, A., Molinari, E.: Phys. Rev. B 77, 041404(R) (2008)

    Article  ADS  Google Scholar 

  6. Denk, R., Hohage, M., Zeppenfeld, P., et al.: Nat. Commun. 5, 4253 (2014)

    Article  ADS  Google Scholar 

  7. Guo, Z., Zhang, D., Gong, X.-G.: Appl. Phys. Lett. 95, 163103 (2009)

    Article  ADS  Google Scholar 

  8. Sevinçli, H., Topsakal, M., Durgun, E., Ciraci, S.: Phys. Rev. B 77, 195434 (2008)

    Article  ADS  Google Scholar 

  9. Yuan, P.F., Zhang, Z.H., Fan, Z.Q., Qiu, M.: Phys. Chem. Chem. Phys. 19, 9528 (2017)

    Article  Google Scholar 

  10. Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  11. Sidorkin, V., van Veldhoven, E., van der Drift, E., Alkemade, P., Salemink, H., Maas, D.: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 27, 18 (2009)

    Article  Google Scholar 

  12. Kosynkin, D.V., Lu, W., Sinitskii, A., Pera, G., Sun, S., Tour, J.M.: ACS Nano. 5, 968 (2011)

    Article  Google Scholar 

  13. Zhong, Z.F., Shen, H.L., Cao, R.X., Sun, L., Li, K.P., Wang, X.R., Ding, H.F.: J. Appl. Phys. 113, 174307 (2013)

    Article  ADS  Google Scholar 

  14. Campos, D.J., et al.: Nano Lett. 8, 2773 (2008)

    Article  ADS  Google Scholar 

  15. Jeong, B., Wuttke, M., Zhou, Y., Müllen, K., Narita, A., Asadi, K.: ACS Appl. Electron. Mater. 4, 2667 (2022)

    Article  Google Scholar 

  16. Shi, H., Dong, Y., Zheng, S., Dong, C., Wu, Z.S.: Nanoscale Adv. 2, 4212 (2020)

    Article  ADS  Google Scholar 

  17. Huang, B., Li, Z., Liu, Z., Zhou, G., Hao, S., Wu, J., Gu, B.-L., Duan, W.: J. Phys. Chem. C 112, 13442 (2008)

    Article  Google Scholar 

  18. Ye, Y., Gan, L., Dai, L., Meng, H., Wei, F., Dai, Y., Shi, Z., Yu, B., Guo, X., Qin, G.: J. Mater. Chem. 21, 11760 (2011)

    Article  Google Scholar 

  19. Wang, F., Li, J., Wang, F., Shifa, T.A., Cheng, Z., Wang, Z., Xu, K., Zhan, X., Wang, Q., Huang, Y., Jiang, C.: Adv. Funct. Mater. 25, 6077 (2015)

    Article  Google Scholar 

  20. Meng, X., Yu, C., Song, X., Liu, Y., Liang, S., Liu, Z., Hao, C., Qiu, J.: Adv. Energy Mater. 5, 1500180 (2015)

    Article  Google Scholar 

  21. Nagarajan, V., Chandiramouli, R.: Appl. Surf. Sci. 494, 1148 (2019)

    Article  ADS  Google Scholar 

  22. Wen, E.C.H., Jacobse, P.H., Jiang, J., Wang, Z., McCurdy, R.D., Louie, S.G., Crommie, M.F., Fischer, F.R.: J. Am. Chem. Soc. 144, 13696 (2022)

    Article  Google Scholar 

  23. Kaneyoshi, T.: Physica B 608, 411854 (2021)

    Article  Google Scholar 

  24. Si, N., Wang, J.-M., Guo, A.-B., Zhang, F., Zhang, F.-G., Jiang, W.: Phys. E 118, 113884 (2020)

    Article  Google Scholar 

  25. Mouhib, M., Bri, S., Tilali, A., Mounir, H., Belrhiti, M.D.: J. Supercond. Nov. Magn. 36, 237 (2023)

    Article  Google Scholar 

  26. Mouhib, M., Bri, S., Mounir, H., Belrhiti, M.D.: J. Magn. Magn. Mater. 585, 171105 (2023)

    Article  Google Scholar 

  27. Mouhib, M., Bri, S., Mounir, H., Tilali, A., Belrhiti, M.D.: J. Magn. Magn. Mater. 564, 170128 (2022)

    Article  Google Scholar 

  28. Lv, J.-Q., Wang, W., Li, B.-C., Yang, M.: Phys. B: Condens. Matter 665, 415084 (2023)

    Article  Google Scholar 

  29. Boughazi, B., Kerouad, M., Kotri, A.: ECS J. Solid State Sci. Technol. 11, 051005 (2022)

    Article  ADS  Google Scholar 

  30. Ye, S.-H., Dong, J.-J., Xie, H.: Phys. E 147, 115588 (2023)

    Article  Google Scholar 

  31. Jabar, A., Masrour, R.: Chin. J. Phys. 64, 1 (2020)

    Article  Google Scholar 

  32. Barker, J., Atxitia, U., Ostler, T.A., Hovorka, O., Chubykalo-Fesenko, O., Chantrell, R.W.: Sci. Rep. 3, 3262 (2013)

    Article  ADS  Google Scholar 

  33. Monsuripur, M.: J. Appl. Phys. 61, 1580 (1987)

    Article  ADS  Google Scholar 

  34. Rybkin, A.G., et al.: Phys. Rev. Lett. 129, 226401 (2022)

    Article  ADS  Google Scholar 

  35. Guo, G.-P., Lin, Z.-R., Tu, T., Cao, G., Li, X.-P., Guo, G.-C.: New J. Phys. 11, 123005 (2009)

    Article  ADS  Google Scholar 

  36. Wang, H., Wang, H.S., Ma, C., Chen, L., Jiang, C., Chen, C., Xie, X., Li, A.-P., Wang, X.: Nat. Rev. Phys. 3, 791 (2021)

    Article  Google Scholar 

  37. Rezapour, M.R., Lee, G., Kim, K.S.: Nanoscale Adv. 2, 5905 (2020)

    Article  ADS  Google Scholar 

  38. Wan, H., Xiao, X., Ang, Y.S.: Nanomaterials 12, 56 (2022)

    Article  Google Scholar 

  39. Fadil, Z., Qajjour, M., Mhirech, A., Kabouchi, B., Bahmad, L., OusiBenomar, W.: Phys. B 564, 104 (2019)

    Article  ADS  Google Scholar 

  40. Sun, L., Zhang, F., Wang, W., Gao, Z.-Y., Li, B.-C., Lv, J.-Q.: J. Magn. Magn. Mater. 547, 168774 (2022)

    Article  Google Scholar 

  41. Li, B.-c, Wang, W., Lv, J.-q, Zhang, X.-h, Wang, F.: Phase Transit. 95, 823 (2022)

    Article  Google Scholar 

  42. Zhang, X.-h, Wang, W., Li, B.-c, Ying, A.: Eur. Phys. J. Plus 138, 333 (2023)

    Article  Google Scholar 

  43. Shi, K.-L., Quan, X.-W., Jiang, W.: Phys. Scr. 98, 015822 (2023)

    Article  ADS  Google Scholar 

  44. de Gennes, P.G.: Solid State Commun. 1, 132 (1963)

    Article  ADS  Google Scholar 

  45. Kaneyoshi, T.: Philos. Mag. 100, 2262 (2020)

    Article  ADS  Google Scholar 

  46. Hu, J.-Q., Jiang, Y.B., Jiang, W.: Phys. Scr. 97, 9 (2022)

    Article  Google Scholar 

  47. Kaneyoshi, T.: J. Magn. Magn. Mater. 406, 83 (2016)

    Article  ADS  Google Scholar 

  48. Feraoun, A., Zaim, A., Kerouad, M.: J. Supercond. Nov. Magn. 31, 135 (2018)

    Article  Google Scholar 

  49. Koop, C., Wessel, S.: Phys. Rev. B 96, 165114 (2017)

    Article  ADS  Google Scholar 

  50. Wang, J.-M., Jiang, W., Zhou, C.-L., Shi, Z., Wu, C.: Superlattices Microstruct. 102, 359 (2017)

    Article  ADS  Google Scholar 

  51. Bai, J., Cheng, R., Xiu, F., Liao, L., Wang, M., Shailos, A., Wang, K.L., Huang, Y., Duan, X.: Nat. Nanotechnol. 5, 655 (2010)

    Article  ADS  Google Scholar 

  52. Oostinga, J.B., Sacépé, B., Craciun, M.F., Morpurgo, A.F.: Phys. Rev. B 81, 193408 (2010)

    Article  ADS  Google Scholar 

  53. Liao, Y., Wu, C., Zhong, Y., Chen, M., Cai, L., Wang, H., Liu, X., Cao, G., Li, W.: Nano Res. 13, 188 (2020)

    Article  Google Scholar 

  54. Boccara, N.: Phys. Lett. A 94, 185 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  55. Benyoussef, A., Boccara, N.: J. Phys. 44, 1143 (1983)

    Article  Google Scholar 

  56. Mouhib, M., Benayard, N., Azhari, M.: J. Magn. Magn. Mater. 419, 325 (2016)

    Article  ADS  Google Scholar 

  57. Mouhib, M., Bri, S., Mounir, H., Belrhiti, M.D.: Philos. Mag. 102, 264 (2022)

    Article  ADS  Google Scholar 

  58. Mouhib, M., Bri, S., Belrhiti, M.D., Mounir, H.: Eur. Phys. J. B. 96, 116 (2023)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

We as authors named below declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere.  We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.  We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.  We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.  All authors contributed to the study conception and design. Program, data collection and analysis were performed by Majid Mouhib.

Corresponding author

Correspondence to M. Mouhib.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhib, M., Bri, S., Belrhiti, M.D. et al. Ferrimagnetic Rectangular and Hexagonal Nanoribbons Under an Applied Transverse Magnetic Field. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06764-z

Keywords

Navigation