Skip to main content
Log in

Normal Metal–Insulator–Superconductor Aharonov-Bohm Interferometer

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

When a non-equilibrium excitation (a non-paired electron) is injected into a superconductor, it can travel fairly large distance before forming an equilibrium Copper pair. Here, we fabricated and experimentally studied electron transport in a solid-state analogue of a two-slit optical interferometer: T-shaped normal metal electrode (copper) — dielectric tunnel layer (aluminum oxide) — superconducting fork (aluminum). If the perimeter of the interferometer loop is sufficiently small, the phase of the non-equilibrium quasiparticle wave function is preserved and can be adjusted utilizing the Aharonov-Bohm effect. The coherent contribution manifests itself as non-monotonic dependence of the tunnel current on perpendicular magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Tinkham, M.: Introduction to superconductivity, McGraw-Hill, Inc. (1996)

  2. Clarke, J.: In: Gray, K.E. (ed.) Nonequlibrium superconductivity, Phonons, and Kapitza Boundaries. Plenum Press, New York (1981)

    Google Scholar 

  3. Kopnin, N.: Theory of nonequilibrium superconductivity. Oxford University Press, New York (2001)

    Book  Google Scholar 

  4. Tinkham, M., Clarke, J.: Phys. Rev. Lett. 28, 1366 (1972)

    Article  ADS  Google Scholar 

  5. Clarke, J.: Phys. Rev. Lett. 28, 1363 (1972)

    Article  ADS  Google Scholar 

  6. Kaplan, S.B., Chi, C.C., Langenberg, D.N., Chang, J.J., Jafarey, S., Scalapino, D.J.: Phys. Rev. B 14, 4854 (1976)

    Article  ADS  Google Scholar 

  7. Belzig, W., Wilhelm, F.K., Bruder, C., Schön, G., Zaikin, A.D.: Superlattices Microstruct. 25, 1251 (1999)

    Article  ADS  Google Scholar 

  8. Yagi, R.: Superlattices Microstruct 34, 263 (2003)

    Article  ADS  Google Scholar 

  9. Beckmann, D., Weber, H.B., v. Löhneysen, H.: Phys. Rev. Lett. 93, 197003 (2004)

    Article  ADS  Google Scholar 

  10. Russo, S., Kroug, M., Klapwijk, T.M., Morpurgo, A.F.: Phys. Rev. Lett. 95, 027002 (2005)

    Article  ADS  Google Scholar 

  11. Cadden, Z.P., Chandrasekhar, V.: Phys. Rev. Lett. 97, 237003 (2006)

    Article  ADS  Google Scholar 

  12. Arutyunov, KYu., Auraneva, H.-P., Vasenko, A.S.: Phys. Rev. B 83, 104509 (2011)

    Article  ADS  Google Scholar 

  13. Arutyunov, KYu., Chernyaev, S.A., Karabassov, T., Lvov, D.S., Stolyarov, V.S., Vasenko, A.S.: J. Phys. Condens. Matter 30, 343001 (2018)

    Article  Google Scholar 

  14. Aharonov, Y., Bohm, D.: Phys. Rev. 115, 485 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  15. Zavyalov, V., Chernyaev, S., Shein, K., Shukaleva, A., Arutyunov, KYu.: J. Phys. Conf. Ser. 969, 012086 (2018)

    Article  Google Scholar 

  16. Sharvin, DYu., Sharvin, Yu.V.: JETP Lett. 34, 285 (1981)

    Google Scholar 

  17. Al’tshuler, B.L., Aronov, A.G., Spivak, B.Z.: JETP Lett. 33, 94 (1981)

    ADS  Google Scholar 

  18. Webb, R.A., Washburn, S., Umbach, C.P., Laibowitz, R.B.: Phys. Rev. Lett. 54, 2696 (1985)

    Article  ADS  Google Scholar 

  19. Little, W.A., Parks, R.D.: Phys. Rev. Lett. 9, 9 (1962)

    Article  ADS  Google Scholar 

  20. Pothier, H., Gueron, S., Esteve, D., Devoret, M.H.: Phys. Rev. Lett. 73, 2488 (1994)

    Article  ADS  Google Scholar 

  21. Hekking, F.W.J., Nazarov, Yu.V.: Phys. Rev. B 49, 6847 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Terhi Hongisto for her assistance in preparing the samples.

Funding

The work was supported by the Russian Science Foundation, project 23-72-00018 “Study of non-equilibrium and boundary phenomena in superconducting hybrid nanostructures”.

Author information

Authors and Affiliations

Authors

Contributions

K. Yu. A. conceived the idea of the experiment; K. Yu. A. and G-W. D. analyzed data and composed manuscript; K. Yu. A, A. S. G and D.L.S. performed experiments; E. Ph.P., A.M.C., M.A.M fabricated the structures; M. A. T. designed the structures and fabrication sequence. All authors reviewed the manuscript.

Corresponding author

Correspondence to K. Yu. Arutyunov.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutyunov, K.Y., Gurskiy, A.S., Pozdnyakova, E.P. et al. Normal Metal–Insulator–Superconductor Aharonov-Bohm Interferometer. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06762-1

Keywords

Navigation