Skip to main content
Log in

Spin-Selective Point-Contact Spectroscopy of Leggett Modes in Superconducting Proximity-Coupled MgB2/La0.67Sr0.33MnO3 Nanocomposites

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Leggett mode is a collective excitation of the phase difference of superconducting condensates whose energy is determined by the strength of Josephson coupling between them. Since the Leggett mode does not perturb the symmetry of Cooper pairs, it should be sensitive to the spin symmetry of the condensate order parameters. Using the point-contact (Andreev) spectroscopy, we have revealed their presence in a three-gap superconducting state realized in MgB2/La0.67Sr0.33MnO3 nanocomposite. Two of them, Δπ and Δσ-enh, are directly connected to intrinsic gaps in MgB2, with a slight increase in the larger σ-gap probably due to a spin-triplet pairing contribution. The third spin-triplet gap Δtr is intrinsic to the La0.67Sr0.33MnO3 compound while manifests itself only when it is proximitized to a superconductor. In such nanocomposite, the appearance of periodic Leggett peaks of two symmetry types is expected to be associated with the spin state of superconducting condensates. The idea of our experiments was to use two types of counter-electrodes, an ordinary normal metal and a spin-polarized conductor. In the first case, the Leggett mode associated with two spin-singlet gaps would be dominant while, due to spin selectivity, excitations of the relative phase for two triplet-spin order parameters are expected to prevail in the second case. In the work, we confirmed this assumption by discovering that the period of Leggett peaks in contacts of the nanocomposite with an Ag tip turned out to be twice as large as those for contacts with La0.67Sr0.33MnO3 and La0.67Ca0.33MnO3 counter-electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Moya, J.S., Lopez-Esteban, S., Pecharroman, C.: The challenge of ceramic/metal microcomposites and nanocomposites. Prog. Mater. Sci. 52, 1017–1090 (2007)

    Article  Google Scholar 

  2. Lang, W.: Nanostructured superconductors”. In: Chakraborty, T. (ed.) Encyclopedia of Condensed Matter Physics, 2nd edn., pp. 368–380. Academic Press, Oxford (2024)

    Chapter  Google Scholar 

  3. Cai, R., Žutić, I., Han, W.: Superconductor/ferromagnet heterostructures: a platform for superconducting spintronics and quantum computation. Adv. Quantum. Technol. 6, 2200080 (2022)

    Article  Google Scholar 

  4. Linder, J., Robinson, J.W.A.: Superconducting spintronics. Nat. Phys. 11, 307–315 (2015)

    Article  Google Scholar 

  5. Krivoruchko, V.N., Tarenkov, V.Y.: Local triplet superconductivity of La0.65Ca0.35MnO3-X point contacts (X = Pb, MgB2). Phys. Rev. B 75, 214508 (2007)

    Article  ADS  Google Scholar 

  6. Krivoruchko, V.N., Tarenkov, V.Y.: Anomalous superconductivity of Pb/La0.7Sr0.3MnO3 point contacts. Phys. Rev. B 78, 054522 (2008)

    Article  ADS  Google Scholar 

  7. Krivoruchko, V.N., Tarenkov, VYu.: Triple-gap superconductivity of MgB2-(La, Sr)MnO3 composite. Phys. Rev. B 86, 104502 (2012)

    Article  ADS  Google Scholar 

  8. Krivoruchko, V.N.: Local spin-triplet superconductivity in half-metallic manganites: a perspective platform for high-temperature topological superconductivity. Low Temp. Phys. 47, 901–907 (2021)

    Article  ADS  Google Scholar 

  9. Liu, X., Panguluri, R.P., Huang, Z.-F., Nadgorny, B.: Double percolation transition in superconductor-ferromagnet nanocomposites. Phys. Rev. Lett. 104, 035701 (2010)

    Article  ADS  Google Scholar 

  10. Liu, X., Panguluri, R.P., Mukherjee, R., Mishra, D., Pokhrel, S., Shoemaker, D.P., Huang, Z.-F., Nadgorny, B.: Nanoparticle geometrical effects on percolation, packing density, and magnetoresistive properties in ferromagnet-superconductor-insulator nanocomposites. Phys. Rev. B 106, 224417 (2022)

    Article  ADS  Google Scholar 

  11. Tanaka, Y., Yanagisawa, T.: Chiral state in three-gap superconductors. Solid State Commun. 150, 1980–1982 (2010)

    Article  ADS  Google Scholar 

  12. Giubileo, F., Romeo, F., Di Bartolomeo, A., Mizuguchi, Y., Romano, P.: Probing unconventional pairing in LaO0.5F0.5BiS2 layered superconductor by point contact spectroscopy. J. Phys. Chem. Solids 118, 192–199 (2018)

    Article  ADS  Google Scholar 

  13. Romano, P., Avitabile, F., Nigro, A., Grimaldi, G., Leo, A., Shu, L., Zhang, J., Di Bartolomeo, A., Giubileo, F.: Transport and point contact measurements on Pr1-xCexPt4Ge12 superconducting polycrystals. Nanomaterials 10, 1810 (2020)

    Article  Google Scholar 

  14. Nigro, A., Guarino, A., Leo, A., Grimaldi, G., Avitabile, F., Romano, P.: Point-contact spectroscopy in bulk samples of electron-doped cuprate superconductors. Materials 16, 7644 (2023)

    Article  ADS  Google Scholar 

  15. Giubileo, F., Romeo, F., Citro, R., Di Bartolomeo, A., Attanasio, C., Cirillo, C., Polcari, A., Romano, P.: Point contact Andreev reflection spectroscopy on ferromagnet/superconductor bilayers. Physica C 503, 158–161 (2014)

    Article  ADS  Google Scholar 

  16. Leggett, A.J.: Number-phase fluctuations in two-band superconductors. Prog. Theor. Phys. 36, 901–930 (1966)

    Article  ADS  Google Scholar 

  17. Sharapov, S.C., Gusynin, V.P., Beck, H.: Effective action approach to the Leggett’’s mode in two-band superconductors. Eur. Phys. J. B. 30, 45–51 (2002)

    Article  ADS  Google Scholar 

  18. Blumberg, G., Mialitsin, A., Dennis, B.S., Klein, M.V., Zhigadlo, N.D., Karpinski, J.: Observation of Leggett’s collective mode in a multiband MgB2 superconductor. Phys. Rev. Lett. 99, 227002 (2007)

    Article  ADS  Google Scholar 

  19. Giorgianni, F., Cea, T., Vicario, C., Hauri, Ch.P., Withanage, W.K., Xi, X., Benfatto, L.: Leggett mode controlled by light pulses. Nat. Phys. 15, 341–346 (2019)

    Article  Google Scholar 

  20. Ponomarev, Y.G., Kuzmicheva, S.A., Mikheev, M.G., Sudakova, M.V., Tchesnokov, S.N., Timergaleev, N.Z., Yarigin, A., Maksimov, E.G., Krasnosvobodtsev, S.I., Varlashkin, A., Hein, M.A., Muller, G., Piel, H., Sevastyanova, L.G., Kravchenko, O., Burdina, K.P., Bulychev, B.M.: Evidence for a two-band behavior of MgB2 from point-contact and tunneling spectroscopy. Solid State Commun. 129, 85–89 (2004)

    Article  ADS  Google Scholar 

  21. Liu, S.-Z., Hu, X.: Massless Leggett mode in three-band superconductors with time-reversal-symmetry breaking. Phys. Rev. Lett. 108, 177005 (2012)

    Article  ADS  Google Scholar 

  22. Huang, W., Scaffidi, T., Sigrist, M., Kallin, C.: Leggett modes and multiband superconductivity in Sr2RuO4. Phys. Rev. B 94, 064508 (2016)

    Article  ADS  Google Scholar 

  23. Lee, P.A., Steiner, J.F.: Detection of collective modes in unconventional superconductors using tunneling spectroscopy. Phys. Rev. B 108, 174503 (2023)

    Article  ADS  Google Scholar 

  24. Xi, X.X.: Two-band superconductor magnesium diboride. Rep. Prog. Phys. 71, 116501 (2008)

    Article  ADS  Google Scholar 

  25. Dagotto, E., Hotta, T., Moreo, A.: Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001)

    Article  ADS  Google Scholar 

  26. Daghero, D., Gonnelli, R.S.: Probing multiband superconductivity by point-contact spectroscopy. Supercond. Sci. Technol. 23, 043001 (2010)

    Article  ADS  Google Scholar 

  27. Naidyuk, Yu.G., Yanson, I.K.: Point-contact spectroscopy. Springer, Berlin (2004)

    Google Scholar 

  28. Stewart, G.R.: Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589–1652 (2011)

    Article  ADS  Google Scholar 

  29. Xi, X., Wang, Z., Zhao, W., Park, J.H., Law, K.T., Berger, H., Forró, L., Shan, J., Mak, K.F.: Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016)

    Article  Google Scholar 

  30. Cuozzo, J.J., Yu, W., Davids, P., Nenoff, T.N., Soh, D.B., Pan, W., Rossi, E.: Leggett modes in a Dirac semimetal. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02412-4

    Article  Google Scholar 

  31. Buzdin, A.I.: Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005)

    Article  ADS  Google Scholar 

  32. Bergeret, F.S., Volkov, A.F., Efetov, K.B.: Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005)

    Article  ADS  Google Scholar 

  33. Eschrig, M.: Spin-polarized supercurrents for spintronics: a review of current progress. Rep. Prog. Phys. 78, 104501 (2015)

    Article  ADS  Google Scholar 

  34. Krivoruchko, V.N., Tarenkov, V.Yu.: Influence of macroscopic magnetic inhomogeneity on the superconducting proximity effect in MgB2/La2/3Ca2/3MnO3 nanocomposite. Low Temp. Phys. 49, 847–854 (2023)

    Article  ADS  Google Scholar 

  35. Eschrig, M., Löfwander, T.: Triplet supercurrents in clean and disordered half-metallic ferromagnets. Nat. Phys. 4, 138–143 (2008)

    Article  Google Scholar 

  36. Keizer, R.S., Goennenwein, S.T.B., Klapwijk, T.M., Miao, G., Xiao, G., Gupta, A.: A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature (London) 439, 825–827 (2006)

    Article  ADS  Google Scholar 

  37. Eschrig, M., Löfwander, T., Champel, T., Cuevas, J.C., Kopu, J., Schön, G.: Symmetries of pairing correlations in superconductor–ferromagnet nanostructures. J. Low Temp. Phys. 147, 457–476 (2007)

    Article  ADS  Google Scholar 

  38. Black-Schaffer, A.M., Balatsky, A.V.: Odd-frequency superconducting pairing in multiband superconductors. Phys. Rev. B 88, 104514 (2013)

    Article  ADS  Google Scholar 

  39. Mazin, I.I., Andersen, O.K., Jepsen, O., Dolgov, O.V., Kortus, J., Golubov, A.A., Kuz’menko, A.B., van der Marel, D.: Superconductivity in MgB2: Clean or dirty? Phys. Rev. Lett. 89, 107002 (2002)

    Article  ADS  Google Scholar 

  40. Abrahams, E., Balatsky, A., Scalapino, D.J., Schrieffer, J.R.: Properties of odd-gap superconductors. Phys. Rev. B 52, 1271 (1995)

    Article  ADS  Google Scholar 

  41. Yokoyama, T., Tanaka, Y., Golubov, A.A.: Manifestation of the odd-frequency spin-triplet pairing state in diffusive ferromagnet/superconductor junctions. Phys. Rev. B 75, 134510 (2007)

    Article  ADS  Google Scholar 

  42. Linder, J., Balatsky, A.V.: Odd-frequency superconductivity. Rev. Mod. Phys. 91, 045005 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  43. Shimano, R., Tsuji, N.: Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103 (2020)

    Article  ADS  Google Scholar 

  44. Tarenkov, V., Dyachenko, A., Krivoruchko, V., Shapovalov, A., Belogolovskii, M.: Tunneling-spectroscopy evidence for two-gap superconductivity in a binary Mo-Re alloy. J. Supercond. Nov. Magn. 33, 569–574 (2020)

    Article  Google Scholar 

  45. Kim, T.H., Moodera, J.S.: Demonstration of all in situ magnesium diboride superconductor thin-film tunnel junctions. Appl. Phys. Lett. 85, 434–436 (2004)

    Article  ADS  Google Scholar 

  46. Fisun, V.V., Triputen, L.Y., Yanson, I.K.: Low-frequency phonons in the point-contact spectrum of MgB2. Low Temp. Phys. 31, 842–846 (2005)

    Article  ADS  Google Scholar 

  47. Mitra, J., Raychaudhuri, A.K., Gayathri, N., Mukovskii, Y.M.: Point-contact spectroscopy of single crystal La0.75Sr0.25MnO3 and resistivity due to electron-phonon interaction. Phys. Rev. B 65, 140406 (2002)

    Article  ADS  Google Scholar 

  48. Belogolovskii, M.A., Revenko, Yu.F., Gerasimenko, AYu., Svistunov, V.M., Hatta, E., Plitnik, G., Shaternik, V.E., Rudenko, E.M.: Inelastic electron tunneling across magnetically active interfaces in cuprate and manganite heterostructures modified by electromigration processes. Low Temp. Phys. 28, 391–394 (2002)

    Article  ADS  Google Scholar 

  49. Krivoruchko, V.N., D’yachenko, A.I., Tarenkov, V.Y.: Andreev-spectroscopy study of unconventional superconductivity in MgB2:(La,Sr)MnO3 nanocomposite. Low Temp. Phys. 40, 895–901 (2014)

    Article  ADS  Google Scholar 

  50. Di Bernardo, A., Diesch, S., Gu, Y., Linder, J., Divitini, G., Ducati, C., Scheer, E., Blamire, M.G., Robinson, J.W.A.: Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces. Nat. Commun. 6, 8053 (2015)

    Article  ADS  Google Scholar 

  51. Pal, A., Ouassou, J.A., Eschrig, M., Linder, J., Blamire, M.G.: Spectroscopic evidence of odd frequency superconducting order. Sci. Rep. 7, 40604 (2017)

    Article  ADS  Google Scholar 

  52. Krull, H., Bittner, N., Uhrig, G.S., Manske, D., Schnyder, A.P.: Coupling of Higgs and Leggett modes in non-equilibrium superconductors. Nat. Commun. 7, 11921 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. I. Popova for very helpful discussions on the microanalyses of our samples.

Funding

M.B. acknowledges the EU NextGenerationEU financial support through the Recovery and Resilience Plan for Slovakia under project no. 09I03-03-V01-00139.

Author information

Authors and Affiliations

Authors

Contributions

V.K. and M.B. wrote the main manuscript text and figures. V.T. prepared samples and made measurements. All authors reviewed manuscript.

Corresponding author

Correspondence to V. N. Krivoruchko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivoruchko, V.N., Tarenkov, V.Y. & Belogolovskii, M. Spin-Selective Point-Contact Spectroscopy of Leggett Modes in Superconducting Proximity-Coupled MgB2/La0.67Sr0.33MnO3 Nanocomposites. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06756-z

Keywords

Navigation