Skip to main content
Log in

DFT Study of the Antiferromagnetic Barium Ruthenate Triple Perovskites Ba3MRu2O9 (M = Fe, Co, and Ni) for Spintronic Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Density-functional theory (DFT) is utilized to study the crystal structure, geometry, and magnetic and electronic properties of the triple perovskites Ba3MRu2O9 (M = Fe, Co, and Ni) in hexagonal phase with space group P63/mmc. Generalized gradient approximation plus Hubbard potential is found to be an effective potential for the treatment of these perovskites. Spin-orbit coupling with Hubbard U (GGA+SOC+U) is also applied to analyze its effect on the understudy compounds. The optimized crystal structures and geometries are consistent with the experimental reported results. The stability of these perovskites is described by cohesive and formation energies. The antiferromagnetic (AFM) nature of all these perovskites is confirmed by stable magnetic phase energies and magnetic susceptibility. The electronic band profiles in the AFM phase and electrical resistivities confirm that these perovskites are metallic in nature. Metallicity as well as magnetism in these compounds is due to d-state electrons of the M and Ru atoms. The metallic AFM nature reveals that these compounds are promising materials for magnetic cloaking, high-speed switching devices, and spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

The data used in the current study are available from the corresponding author on reasonable request.

References

  1. Stitzer, K.E., Smith, M.D., Gemmill, W.R., Loye, H.C.Z.: Novel mixed-valent (V/VI) triple perovskite ruthenates: observation of a complex low-temperature structural and magnetic transition. J. Am. Chem. Soc. 124, 13877–13885 (2002). https://doi.org/10.1021/ja0271781

    Article  Google Scholar 

  2. Kushwaha, A.K., Ugur, S., Güler, M., Guler, E., Gur, G.U.: First principles investigations of structural, elastic, mechanical, electronic and optical properties of triple perovskite Ba2K2Te2O9. Physica B 596, 412404 (2020). https://doi.org/10.1016/j.physb.2020.412404

    Article  Google Scholar 

  3. Zhang, Y., Ji, V., Xu, K.W.: Structural, electronic and magnetic properties of a symmetrical FeReO terminated (001)-oriented slab of double perovskite Sr2FeReO6. Mater. Chem. Phys. 136, 570–576 (2012). https://doi.org/10.1016/j.matchemphys.2012.07.028

    Article  Google Scholar 

  4. Gray, B., Lee, H.N., Liu, J., Chakhalian, J., Freeland, J.W.: Local electronic and magnetic studies of an artificial La2FeCrO6, La2FeCrO6 double perovskite. Appl. Phys. Lett. 97(1–3), 013105 (2010). https://doi.org/10.1063/1.3455323

    Article  ADS  Google Scholar 

  5. Rai, D.P., Shankar, A., Ghimire, M.P., Sandeep, R.K., Thapa,: The electronic, magnetic and optical properties of double perovskite A2FeReO6 (A= Sr, Ba) from first principles approach. Comput. Mater. Sci. 101, 313–320 (2015). https://doi.org/10.1016/j.commatsci.2015.01.027

    Article  Google Scholar 

  6. Scott, J.F.: Multiferroic memories. Nat. Mater. 6, 256–257 (2007). https://doi.org/10.1038/nmat1868

    Article  ADS  Google Scholar 

  7. Viola, M.C., Alonso, J.A., Pedregosa, J.C., Carbonio, R.E.: Crystal structure and magnetism of the double perovskite Sr3Fe2MoO9: a neutron diffraction study. Eur. J. Inorg. Chem. 8, 1559–1564 (2005). https://doi.org/10.1002/ejic.200400746

    Article  Google Scholar 

  8. Augsburger, M.S., Viola, M.C., Pedregosa, J.C., Carbonio, R.E., Alonso, J.A.: Crystal structure and magnetism of the double perovskites Sr3Fe2TeO9 and Ba3Fe2TeO9: a neutron diffraction study. J. Mater. Chem. 16, 4235–4242 (2006). https://doi.org/10.1039/B607376J

    Article  Google Scholar 

  9. Jungwirth, T., Marti, X., Wadley, P., Wunderlich, J.: Antiferromagnetic spintronics. Nat. Nanotech. (2016). https://doi.org/10.1038/NNANO.2016.18

    Article  Google Scholar 

  10. Rijssenbeek, J.T., Matl, P., Batlogg, B., Ong, N.P., Cava, R.J.: Electrical and magnetic properties of a series of ternary barium metal ruthenates: Ba3MRu2O9.M=Fe Co, Ni, Cu, and In. Phys. Rev. B 58, 10315–10318 (1998). https://doi.org/10.1103/PhysRevB.58.10315

    Article  ADS  Google Scholar 

  11. Schaller, H.-U., Kemmler-Sack, S., Z.: On ruthenium perovskites of type Ba2BRuO6 and Ba3BRu2O9 with B = indium, rhodium. Anorg. Allg. Chem. 473, 178–188 (1981). (ISSN 0044-2313)

    Article  Google Scholar 

  12. Donohue, P.C., Katz, L., Ward, R.: The modification of structures of ternary oxides by cation substitution. ii. substitution of various cations for ruthenium in barium ruthenium oxide. Inorg. Chem. 5, 339–342 (1966). https://doi.org/10.1021/ic50037a002

    Article  Google Scholar 

  13. Byrne, R.C., Moeller, C.W.: Magnetic interactions of ruthenium, rhodium, and iridium in the hexagonal barium titanate structure. J. Solid State Chem. 2, 228–235 (1970). https://doi.org/10.1016/0022-4596(70)90075-7

    Article  ADS  Google Scholar 

  14. Treiber, U., Kemmler-Sack, S., Ehmann, U.: Perovskites with noble metals of type Ba3BM2O9; B = Mg, Fe Co, Ni, Zn, Cd; M = Ru, Ir. Z. Anorg. Allg. Chem. 487, 189–198 (1982). (ISSN 0044-2313)

    Article  Google Scholar 

  15. Lightfoot, P., Battle, P.D.: The crystal and magnetic structures of Ba3NiRu2O9 Ba3CoRu2O9 and Ba3ZrRu2O9. J. Solid State Chem. 89, 174–183 (1990). https://doi.org/10.1016/0022-4596(90)90309-L

    Article  ADS  Google Scholar 

  16. Rijssenbeek, J.T., Huang, Q., Erwin, R.W., Zandbergen, H.W., Cava, R.J.: The crystal structure of Ba3CuRu2O9 and comparison to Ba3MRu2O9 (M=In Co, Ni, and Fe). J. Solid State Chem. 146, 65–72 (1999). https://doi.org/10.1006/jssc.1999.8309

    Article  ADS  Google Scholar 

  17. Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G.K.H., Marks, L.D.: WIEN2k, an augmented plane wave + local orbital program for calculating properties of solids. J. Chem. Phys. 152(1–30), 074101 (2020). https://doi.org/10.1016/0010-4655(90)90187-6

    Article  ADS  Google Scholar 

  18. Perdew, J.P., Burka, K., Ernzerhof, M.: Genralized gradient approximation made sample. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  19. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C., Sutton, A.: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  ADS  Google Scholar 

  20. Koelling, D., Harmon, B.N.: A technique for relativistic spin-polarised calculations. J. Phys. C Solid State Phys. 10, 3107–3114 (1977). https://doi.org/10.1088/0022-3719/10/16/019

    Article  ADS  Google Scholar 

  21. Madsen, G.K.H., Montana, J.C., Verstraete, M.J.: BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  Google Scholar 

  22. Moruzzi, V.L., Janak, J.F., Williams, A.R.: Calculated electronic properties of metals. Pergamon, New York (1978)

    Google Scholar 

  23. Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809–824 (1947). https://doi.org/10.1103/PhysRev.71.809

    Article  ADS  Google Scholar 

  24. Mehmood, S., Ali, Z., Khan, I., Ahmad, I.: Effects of cobalt substitution on the physical properties of the perovskite strontium ferrite. Mater. Chem. Phys. 196, 222–228 (2017). https://doi.org/10.1016/j.matchemphys.2017.04.065

    Article  Google Scholar 

  25. Bhalla, A.S., Guo, R., Roy, R.: The perovskite structure – a review of its role in ceramic science and technology. Mater. Res. Innovat. 4, 3–26 (2000). https://doi.org/10.1007/s100190000062

    Article  ADS  Google Scholar 

  26. Johnsson, M., Lemmens, P.: “Crystallography and chemistry of perovskites” Wiley. Hoboken (2007). https://doi.org/10.1002/9780470022184.hmm411

    Article  Google Scholar 

  27. Raghuvanshi, S., Mazaleyrat, F., Kane, S.N.: Mg1-xZnxFe2O4 nanoparticles: interplay between cation distribution and magnetic properties. AIP Adv. 8(1–11), 047804 (2018)

    Article  ADS  Google Scholar 

  28. Mehmood, S., Ali, Z.: DFT study of the spin glass and ferrimagnetism in quadruple perovskites CaCu3B2Ir2O12 (B = Mn, Fe Co, and Ni) for spintronic applications. Appl. Phys. A 129, 76 (2023). https://doi.org/10.1007/s00339-022-06352-9

    Article  ADS  Google Scholar 

  29. Retegan, M., Jafri, S.F., Curti, L., Lisnard, L., Otero, E.: Orbital magnetic moment and single-ion magnetic anisotropy of the S = 1/2 K 3 [Fe(CN) 6 ] compound: a case where the orbital magnetic moment dominates the spin magnetic moment. Inorg. Chem. (2023). https://doi.org/10.1021/acs.inorgchem.3c02158. (hal-04279692)

  30. Chen, X., Bai, H., Ji, Y., et al.: Control of spin current and antiferromagnetic moments via topological surface state. Nat Electron 5, 574–578 (2022). https://doi.org/10.1038/s41928-022-00825-8

    Article  Google Scholar 

  31. Jungwirth, T., Marti, X., Wadley, P., Wunderlich, J.: Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). https://doi.org/10.1038/nnano.2016.18

    Article  ADS  Google Scholar 

  32. Mehmood, S., Ali, Z.: New anti-ferromagnetic tri-transition quaternary perovskites for magnetic cloaking and spintronic applications. Mater. Chem. Phys. 282(18), 125915 (2022). https://doi.org/10.1016/j.matchemphys.2022.125915

    Article  Google Scholar 

  33. Alharbi, F.F., Mehmood, S., Ali, Z., Aman, S., Khosa, R.Y., Kostishyn, V.G., Trukhanov, S.V., Sayyed, M.I., Tishkevich, D.I., Trukhanov, Alex V.: First principles calculation to investigate the effect of Mn substitution on Cu site in CeCu3-xMnxV4O12 (x = 0, 1, 2 and 3) system. RSC Adv 13, 12973 (2023). https://doi.org/10.1039/d3ra00263b

    Article  ADS  Google Scholar 

  34. Alwadai, N., Mehmood, S., Ali, Z., Al-Buriahi, M.S., Alomairy, S., Khosa, R.Y., Alrowaili, Z.A., Somaily, H.H., Aman, S., Farid, H.M.T.: Structural, electronic, elastic and magnetic properties of Ln3QIn (Ln = Ce, Pr and Nd; Q = C and N) anti-perovskites. J. Electron. Mater. 51, 2819–2827 (2022). https://doi.org/10.1007/s11664-022-09543-5

    Article  ADS  Google Scholar 

  35. Jungwirth, T., Sinova, J., Manchon, A., Marti, X., Wunderlich, J., Felser, C.: The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018). https://doi.org/10.1038/s41567-018-0063-6

    Article  Google Scholar 

  36. Mehmood, S., Ali, Z., Alwadai, N., Huwayz, M.A., Buriahi, M.S.A., Trukhanov, S.V., Tishkevich, D.I., Trukhanov, A.V.: Combined first principles and Heisenberg model studies of ferrimagnetic Tri-transition quaternary perovskites CaCu3B2Re2O12 (B = Mn, Fe Co, and Ni). J. Phys. Chem. Solids 174, 111162 (2023). https://doi.org/10.1016/j.jpcs.2022.111162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rahman Zada: writing—original draft preparation, formal analysis, writing visualization. Zahid Ali: supervision, project administration, conceptualization, methodology. Shahid Mehmood: formal analysis, plotting graphs, writing—reviewing and editing.

Corresponding author

Correspondence to Zahid Ali.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zada, R., Ali, Z. & Mehmood, S. DFT Study of the Antiferromagnetic Barium Ruthenate Triple Perovskites Ba3MRu2O9 (M = Fe, Co, and Ni) for Spintronic Applications. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06749-y

Keywords

Navigation