Skip to main content
Log in

Multi Phase Driven Large Operating Temperature Range Magnetocaloric Effect in In Incorporated HoCo2 Alloy

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Ho-Co-In alloy was thoroughly studied for its magnetic and magnetocaloric properties, revealing a dual-phase structure comprising cubic HoCo2 and an unidentifiable phase, with stoichiometry HoCo1.5In0.33. At distinct temperatures, T1 = 123 K and T2 = 34 K, the alloy showcased ferromagnetic behavior, while transitioning to antiferromagnetic ordering at T3 = 7 K. The ferromagnetic shifts were determined to be of second-order nature, displaying minimal magnetic hysteresis. The magnetocaloric effect (MCE) was computed using Maxwell’s equations based on isothermal magnetization data. Because of multi-phase nature, the alloy’s multiple magnetic transitions gave rise to twin peaks in the MCE graph, reaching relative cooling power (RCP) value of 595 J/kg for an applied magnetic field change of 0–9 T. Furthermore, the alloy showcased a notable maximum magnetoresistance, registering at -15% around 123 K. These findings shows the alloy’s intricate magnetic behavior and its potential for diverse applications owing to its distinct magnetocaloric and magnetoresistive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Gschneidner, A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog Phys. 68, 1479–1539 (2005). https://doi.org/10.1088/0034-4885/68/6/R04

    Article  ADS  Google Scholar 

  2. Li, L.W.: Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals. Chin. Phys. B. 25 (2016). https://doi.org/10.1088/1674-1056/25/3/037502

  3. Pecharsky, V.K., Gschneidner, K.A.: Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997). https://doi.org/10.1103/PhysRevLett.78.4494

    Article  ADS  Google Scholar 

  4. Tegus, O., Brück, E., Buschow, K.H.J., De Boer, F.R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 415, 150–152 (2002). https://doi.org/10.1038/415150a

    Article  ADS  Google Scholar 

  5. Wada, H., Taniguchi, K., Tanabe, Y.: Extremely large magnetic entropy change of MnAs1 – xSbx near room temperature. Mater. Trans. 43, 73–77 (2002). https://doi.org/10.2320/matertrans.43.73

    Article  Google Scholar 

  6. Yu, P., Zhang, N.Z., Cui, Y.T., Wu, Z.M., Wen, L., Zeng, Z.Y., Xia, L.: Achieving better magneto-caloric effect near room temperature in amorphous Gd50Co50 alloy by minor Zn addition. J. Non Cryst. Solids. 434, 36–40 (2016). https://doi.org/10.1016/j.jnoncrysol.2015.12.007

    Article  ADS  Google Scholar 

  7. Chen, J., Shen, B.G., Dong, Q.Y., Sun, J.R.: Giant magnetocaloric effect in HoGa compound over a large temperature span. Solid State Commun. 150, 157–159 (2010). https://doi.org/10.1016/j.ssc.2009.10.023

    Article  ADS  Google Scholar 

  8. Zhang, Q., Cho, J.H., Li, B., Hu, W.J., Zhang, Z.D.: Magnetocaloric effect in Ho2In over a wide temperature range. Appl. Phys. Lett. 94, 1–4 (2009). https://doi.org/10.1063/1.3130090

    Article  Google Scholar 

  9. Li, J., Liu, Y., Lu, X., Zhang, Y., Guo, J., Zhang, M., Liu, J.: Enhanced refrigeration capacity in Ho1 – xDyxB2 compounds around liquid hydrogen temperature. J. Alloys Compd. 864, 158757 (2021). https://doi.org/10.1016/j.jallcom.2021.158757

    Article  Google Scholar 

  10. Yang, Y., Zhang, Y., Xu, X., Geng, S., Hou, L., Li, X., Ren, Z., Wilde, G.: Magnetic and magnetocaloric properties of the ternary cadmium based intermetallic compounds of Gd2Cu2Cd and Er2Cu2Cd. J. Alloys Compd. 692, 665–669 (2017). https://doi.org/10.1016/j.jallcom.2016.09.104

    Article  Google Scholar 

  11. Yi, Y., Li, L., Su, K., Qi, Y., Huo, D.: Large magnetocaloric effect in a wide temperature range induced by two successive magnetic phase transitions in Ho2Cu2Cd compound. Intermetallics. 80, 22–25 (2017). https://doi.org/10.1016/j.intermet.2016.10.005

    Article  Google Scholar 

  12. Zhang, Y., Yang, Y., Xu, X., Geng, S., Hou, L., Li, X., Ren, Z., Wilde, G.: Excellent magnetocaloric properties in RE2Cu2Cd (RE = Dy and Tm) compounds and its composite materials. Sci. Rep. 6, 1–9 (2016). https://doi.org/10.1038/srep34192

    Article  Google Scholar 

  13. Zhang, Y., Xu, X., Yang, Y., Hou, L., Ren, Z., Li, X., Wilde, G.: Study of the magnetic phase transitions and magnetocaloric effect in Dy2Cu2In compound. J. Alloys Compd. 667, 130–133 (2016). https://doi.org/10.1016/j.jallcom.2016.01.157

    Article  Google Scholar 

  14. Li, L., Yi, Y., Su, K., Qi, Y., Huo, D., Pöttgen, R.: Magnetic properties and large magnetocaloric effect in Ho2Cu2In and Ho2Au2In compounds. J. Mater. Sci. 51, 5421–5426 (2016). https://doi.org/10.1007/s10853-016-9845-3

    Article  ADS  Google Scholar 

  15. Balfour, E.A., Shang, Y.F., Fu, H., El-Gendy, A.A., Hadimani, R.L., Luo, Y.: Suppression of impurity phases and the study of magnetic and magnetocaloric properties of Ho2Co2Al intermetallic compound. J. Magn. Magn. Mater. 443, 79–84 (2017). https://doi.org/10.1016/j.jmmm.2017.05.067

    Article  ADS  Google Scholar 

  16. Markosyan, A.S.: Crystal structure distortion and magnetostriction of RCo2 compounds (R = Y, Dy, Ho, Er). Fiz. Tverd. Tela. 23, 1656–1661 (1981)

    Google Scholar 

  17. Nikitin, S.A., Tishin, A.M.: Magnetocaloric effect in HoCo2 compound. Cryogenics (Guildf). 31, 166–167 (1991). https://doi.org/10.1016/0011-2275(91)90171-R

    Article  ADS  Google Scholar 

  18. Banerjee, B.K.: On a generalised approach to first and second order magnetic transitions, (1964)

  19. Pakhira, S., Mazumdar, C., Ranganathan, R., Giri, S., Avdeev, M.: Large magnetic cooling power involving frustrated antiferromagnetic spin-glass state in R2NiSi3 (R = gd,Er). Phys. Rev. B. 94, 1–15 (2016). https://doi.org/10.1103/PhysRevB.94.104414

    Article  Google Scholar 

  20. Wood, M.E., Potter, W.H.: General analysis of magnetic refrigeration and its optimization using a new concept: Maximization of refrigerant capacity. Cryogenics (Guildf). 25, 667–683 (1985). https://doi.org/10.1016/0011-2275(85)90187-0

    Article  ADS  Google Scholar 

  21. Pathak, A.K., Dubenko, I., Stadler, S., Ali, N.: Magnetic and magnetocaloric properties of Gd6X2Si3 (X = Ni, Co) and Ln6Co2Si3 (Ln = Pr, La). J. Appl. Phys. 109, 3–7 (2011). https://doi.org/10.1063/1.3544509

    Article  Google Scholar 

  22. Wang, L.C., Cui, L., Dong, Q.Y., Mo, Z.J., Xu, Z.Y., Hu, F.X., Sun, J.R., Shen, B.G.: Large magnetocaloric effect with a wide working temperature span in the R2CoGa3 (R = gd, Dy, and Ho) compounds. J. Appl. Phys. 115, 0–5 (2014). https://doi.org/10.1063/1.4884233

    Article  Google Scholar 

  23. Zhang, Q.M., Gao, R.L., Cui, L., Wang, L.C., Fu, C.L., Xu, Z.Y., Mo, Z.J., Cai, W., Chen, G., Deng, X.L.: Magnetic properties and magnetocaloric effect of the compound NdSi. Phys. B Condens. Matter. 456, 258–260 (2015). https://doi.org/10.1016/j.physb.2014.09.008

    Article  ADS  Google Scholar 

  24. Zhang, Y., Yang, B., Wilde, G.: Magnetic properties and magnetocaloric effect in ternary REAgAl (RE = er and Ho) intermetallic compounds. J. Alloys Compd. 619, 12–15 (2015). https://doi.org/10.1016/j.jallcom.2014.08.235

    Article  Google Scholar 

Download references

Acknowledgements

The author, Athul S R, thanks CSIR, Govt. India for awarding JRF through CSIR fellowship (No. 09/895(0013)/2019-EMR-I). This research work is a part of the Project implementation: University Science Park TECHNICOM for Innovation Applications Supported by Knowledge Technology, ITMS: 313011D232., supported by the Research & Development Operational Programme funded by the ERDF; and also by VEGA 1/0407/24.

Author information

Authors and Affiliations

Authors

Contributions

A.S.R.: Conceptualization, Investigation, Formal analysis, and Writing-original draft; A.K.: Investigation, and Writing- Review & Edit; S.S.: Investigation, and Writing- Review & Edit; R.U.D.: Investigation, and Writing- Review & Edit; A.D.: Data curation; M.R.: Data curation, and Writing- Review & Edit, Funding acquisition; N.R.: Validation, Writing- Review & Edit, Funding acquisition and Supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to R. Nagalakshmi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athul, S., Arun, K., Swathi, S. et al. Multi Phase Driven Large Operating Temperature Range Magnetocaloric Effect in In Incorporated HoCo2 Alloy. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06737-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06737-2

Keywords

Navigation