Skip to main content
Log in

Two-Phase Microstructure Generated by Reaction of Nano WO3 Addition and its Effect on Flux Pinning in Bi 2212 Composites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, Tungsten trioxide (WO3) nanoparticles are added (up to 5 wt%) to Bi2Sr2.14Ca0.86Cu2Oy (Bi 2212) compound using a sol-casting method that facilitates their uniform distribution in the Bi 2212 matrix. Sintering at 870 oC, close to the melting point, has led to the formation of nearly spherical particles of WSr2CaO6 (W-alloy) phase (20–80 nm) by local reaction of distributed nano WO3 particles with Bi 2212 grains. These particles are well dispersed and located preferentially at the platelet-like grain boundaries in the superconducting Bi 2212 composites. This is of interest in analogy to the widely studied YBa2Cu3Oy (Y123) superconductor with two-phase microstructure with Y2BaCuO5 (Y211) precipitates, which is known to provide flux pinning and considerable enhancement of the critical current densities (Jc). The superconducting properties of the present Bi 2212 composites with varying amounts of second phase content are assessed by recording M-H loops at different temperatures 5 to 77 K. Critical current densities are found to be non-zero at 5 K in all the samples up to 9 T applied field, suggesting irreversibility fields to be above 9T. A considerable enhancement of Jc and flux pinning force are observed at temperatures 15–50 K, compared to pure 2212 phase at low concentrations (0.1 wt%) of nano WO3 addition in the composites. A minor drop in the superconducting transition temperature Tc (onset) from 90 to 80 K observed in the sample with higher WO3 addition (5 wt%) caused a lowering of flux pinning force at temperatures 50 K and above. Scaling laws of flux pinning show that normal surface pinning is the dominant mechanism in all the samples, which can be attributed to the structural defects at the 2212 platelet boundaries. Flux pinning is observed to be sustained in a broader field range and up to 50 K in all the samples with WO3 addition. This provides evidence that the interfacial defects associated with the second phase (W-alloy) particles, created at the platelet boundaries, are effective in providing flux pinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T., Togano, K., Kumakura, H., Uehara, M., Ikeda, S., Ogawa, K., Horiuchi, S., Matsui, Y.: New high-Tc superconductors without rare earth element. Phys. C Supercond its Appl. 153–155, 602–607 (1988). https://doi.org/10.1016/0921-4534(88)90727-7

    Article  ADS  Google Scholar 

  2. Kametani, F., Jiang, J., Matras, M., Abraimov, D., Hellstrom, E.E., Larbalestier, D.C.: Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development. Sci. Rep. 5, 1–9 (2015). https://doi.org/10.1038/srep08285

    Article  CAS  Google Scholar 

  3. Bulaevskii, L.N., Daemen, L.L., Maley, M.P., Coulter, J.Y.: Limits to the critical current in high- Tc superconducting tapes. Phys. Rev. B. 48, 13798–13816 (1993). https://doi.org/10.1103/PhysRevB.48.13798

    Article  CAS  ADS  Google Scholar 

  4. Kumar, R.R., Aloysius, R.P., Bose, R.J., Guruswamy, P., Syamaprasad, U.: Preparation of dense, high JC Bi-2223 superconductors by multistage cold pressing. Supercond Sci. Technol. 18, 689–693 (2005). https://doi.org/10.1088/0953-2048/18/5/018

    Article  CAS  ADS  Google Scholar 

  5. Chikumoto, N., Konczykowski, M., Motohira, N., Malozemoff, A.P.: Flux-creep crossover and relaxation over surface barriers in Bi2Sr2CaCu2O8 crystals. Phys. Rev. Lett. 69, 1260–1263 (1992). https://doi.org/10.1103/PhysRevLett.69.1260

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Lykov, A.N.: Magnetic flux creep in HTSC and Anderson-Kim theory (review article). Low Temp. Phys. 40, 773–795 (2014). https://doi.org/10.1063/1.4896968

    Article  CAS  ADS  Google Scholar 

  7. Yamada, Y., Takahashi, K., Kobayashi, H., Konishi, M., Watanabe, T., Ibi, A., Muroga, T., Miyata, S., Kato, T., Hirayama, T., Shiohara, Y.: Epitaxial nanostructure and defects effective for pinning in Y(RE)Ba2Cu3O7 – x coated conductors. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2061874

    Article  CAS  Google Scholar 

  8. Eley, S., Glatz, A., Willa, R.: Challenges and transformative opportunities in superconductor vortex physics. J. Appl. Phys. 130 (2021). https://doi.org/10.1063/5.0055611

  9. Shi, D., Chen, J.G., Welp, U., Boley, M.S., Zangvil, A.: Lattice defects and flux pinning in crystallized metal-oxide glasses in the bi-sr-ca-cu-o system. Appl. Phys. Lett. 55, 1354–1356 (1989). https://doi.org/10.1063/1.101896

    Article  CAS  ADS  Google Scholar 

  10. Devendra Kumar, N., Rajasekharan, T., Gundakaram, R.C., Seshubai, V.: Extensive nanotwinning: Origin of high current density to high fields in preform-optimized infiltration-growth-processed YBa2Cu3O7 – δ superconductor. IEEE Trans. Appl. Supercond. 21, 3612–3620 (2011). https://doi.org/10.1109/TASC.2011.2168819

    Article  CAS  ADS  Google Scholar 

  11. Wei, W., Schwartz, J., Goretta, K., Balachandran, U., Bhargava, A.: Effects of nanosize MgO additions to bulk Bi2.1Sr1.7CaCu2Ox. Phys. C Supercond. 298, 279–288 (1998). https://doi.org/10.1016/S0921-4534(97)01889-3

    Article  CAS  ADS  Google Scholar 

  12. Christova, K., Manov, A., Nyhus, J., Thisted, U., Herstad, O., Foss, S., Haugen, K., Fossheim, K.: Bi2Sr2CaCu2Ox bulk superconductor with MgO particles embedded. J. Alloys Compd. 340, 1–5 (2002). https://doi.org/10.1016/S0925-8388(01)02021-7

    Article  CAS  Google Scholar 

  13. Agranovski, I.E., Ilyushechkin, A.Y., Altman, I.S., Bostrom, T.E., Choi, M.: Methods of introduction of MgO nanoparticles into Bi-2212/Ag tapes. Phys. C Supercond its Appl. 434, 115–120 (2006). https://doi.org/10.1016/j.physc.2005.12.005

    Article  CAS  ADS  Google Scholar 

  14. Zhang, S., Li, C., Hao, Q., Feng, J., Lu, T., Zhang, P.: Optimized intergrain connection and Transport properties of Bi-2212 High-Temperature superconductors by Ag nanoparticles inclusions. J. Supercond Nov Magn. 28, 1729–1736 (2015). https://doi.org/10.1007/s10948-015-2981-1

    Article  CAS  Google Scholar 

  15. Li, C., Zhang, S., Gao, L., Hao, Q., Bai, L., Zhang, P.: Doping effects of ZrO2 nanoparticles on the superconducting properties of Bi-2212 tapes. J. Mater. Sci. Mater. Electron. 26, 3583–3588 (2015). https://doi.org/10.1007/s10854-015-2872-z

    Article  CAS  Google Scholar 

  16. Jia, Z.Y., Tang, H., Yang, Z.Q., Xing, Y.T., Wang, Y.Z., Qiao, G.W.: Effects of nano-ZrO2 particles on the superconductivity of Pb-doped BSCCO. Phys. C Supercond its Appl. 337, 130–132 (2000). https://doi.org/10.1016/S0921-4534(00)00072-1

    Article  CAS  ADS  Google Scholar 

  17. Guo, Y.C., Tanaka, Y., Kuroda, T., Dou, S.X., Yang, Z.Q.: Addition of nanometer SiC in the silver-sheathed Bi2223 superconducting tapes. Phys. C Supercond its Appl. 311, 65–74 (1999). https://doi.org/10.1016/S0921-4534(98)00625-X

    Article  CAS  ADS  Google Scholar 

  18. Hua, L., Yuan, G., Yoo, J., Kim, H., Chung, H., Qiao, G.: Effect of ultra-fine MgO doping on flux pinning properties of Bi-2223/Ag superconducting tapes. Phys. C Supercond its Appl. 341–348 (2000). https://doi.org/10.1016/S0921-4534(00)01212-0

  19. Özkurt, B.: The influence of WO3 nano-particle addition on the structural and mechanical properties of Bi1.8Sr2Ca 1.1Cu2.1Oy ceramics. J. Mater. Sci. Mater. Electron. 24, 4233–4239 (2013). https://doi.org/10.1007/s10854-013-1390-0

    Article  CAS  Google Scholar 

  20. Türk, N., Gündoğmuş, H., Akyol, M., Yakıncı, Z.D., Ekicibil, A., Özçelik, B.: Effect of tungsten (W) substitution on the physical properties of Bi-(2223) superconductors. J. Supercond Nov Magn. 27, 711–716 (2014). https://doi.org/10.1007/s10948-013-2351-9

    Article  CAS  Google Scholar 

  21. Verma, P.K., Kaipamangalath, A., Varma, M.R., Bai, V.S.: Non-reactive Nano WO3 inclusions to Enhance Flux Pinning in Bi-2223 Superconductor composites. IEEE Trans. Appl. Supercond. 1–25 (2023). https://doi.org/10.1109/TASC.2023.3332750

  22. Raju, P.M.S., Seshubai, V., Rajasekharan, T.: A generic process to introduce nanoparticles into powder preforms and its application to Infiltration Growth processing of REBa2Cu3O7 superconductor. Mater. Chem. Phys. 161, 59–64 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.004

    Article  CAS  Google Scholar 

  23. Ravi, S., Bai, S.: Excess conductivity studies in pure and Ag doped 85 K phase in bi-sr-ca-cu-o system. Solid State Commun. 83, 117–121 (1992). https://doi.org/10.1016/0038-1098(92)90887-F

    Article  CAS  ADS  Google Scholar 

  24. Bai, V.S., Ravi, S., Rajasekharan, T., Gopalan, R.: On the composition of 110 K superconductor in a (Bi,Pb)-Sr-Ca-Cu-O system. J. Appl. Phys. 70, 4378–4382 (1991). https://doi.org/10.1063/1.349119

    Article  CAS  ADS  Google Scholar 

  25. Ravi, S., Bai, S.: AC susceptibility study in the 85 K phase of the bi-sr-ca-cu-o system. Phys. C Supercond its Appl. 230, 51–60 (1994). https://doi.org/10.1016/0921-4534(94)90445-6

    Article  CAS  ADS  Google Scholar 

  26. Verma, P.K., Rajasekharan, T., Das, S.C., Surendran, K.P., Bai, S.: Effect of nano ZrO2 addition on the properties of Ca0.86Sr0.14CuO2 added Bi 2223 composites. J. Phys. Conf. Ser. 2545, 012014 (2023). https://doi.org/10.1088/1742-6596/2545/1/012014

    Article  Google Scholar 

  27. Bai, V.S., Ravi, S., Rajasekharan, T., Gopalan, R.: On the composition of 110 K superconductor in a (Bi,Pb)-Sr‐Ca‐Cu‐O system. J. Appl. Phys. 70, 4378–4382 (1991). https://doi.org/10.1063/1.349119

    Article  CAS  ADS  Google Scholar 

  28. Chen, D.-X., Hernando, A., Conde, F., Ramírez, J., González‐Calbet, J.M., Vallet, M.: Lower critical field and surface barrier in sintered Bi2Sr2CaCu2O 8+δ superconductor. J. Appl. Phys. 75, 2578–2583 (1994). https://doi.org/10.1063/1.356232

    Article  CAS  ADS  Google Scholar 

  29. Enferadi-Kerenkan, A., Ello, A.S., Do, T.O.: Synthesis, Organo-Functionalization, and Catalytic Properties of Tungsten Oxide nanoparticles as Heterogeneous Catalyst for oxidative cleavage of oleic acid as a model fatty acid into Diacids. Ind. Eng. Chem. Res. 56, 10639–10647 (2017). https://doi.org/10.1021/acs.iecr.7b03001

    Article  CAS  Google Scholar 

  30. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  31. Thoma, M., Shi, Y., Dennis, T., Durrell, J., Cardwell, D.: Effect of Y-211 particle size on the growth of single grain Y-Ba-Cu-O bulk superconductors. J. Cryst. Growth. 412, 31–39 (2015). https://doi.org/10.1016/j.jcrysgro.2014.11.037

    Article  CAS  ADS  Google Scholar 

  32. Murakami, M.: Processing of bulk YBaCuO. Supercond Sci. Technol. 5, 185–203 (1992). https://doi.org/10.1088/0953-2048/5/4/001

    Article  CAS  ADS  Google Scholar 

  33. Devendra Kumar, N., Rajasekharan, T., Muraleedharan, K., Banerjee, A., Seshubai, V.: Unprecedented current density to high fields in YBa2Cu3O7 – δ superconductor through nano-defects generated by preform optimization in infiltration growth process. Supercond Sci. Technol. 23, 105020 (2010). https://doi.org/10.1088/0953-2048/23/10/105020

    Article  CAS  ADS  Google Scholar 

  34. Pavan Kumar Naik, S., Devendra Kumar, N., Raju, M.S., Rajasekharan, P., Seshubai, T.: Effect of infiltration temperature on the properties of infiltration growth processed YBCO superconductor. Phys. C Supercond its Appl. 487, 72–76 (2013). https://doi.org/10.1016/j.physc.2013.01.008

    Article  CAS  ADS  Google Scholar 

  35. Lovleena, Bidikin, I.K., Kholkin, A.L., Kumar, B.: Structural changes in ab-plane of Zn doped Bi-2212 HTSC single crystals. Phys. C Supercond. 451, 44–48 (2007). https://doi.org/10.1016/j.physc.2006.10.003

    Article  CAS  ADS  Google Scholar 

  36. Goretta, K.C., Todt, V.R., Miller, D.J., Lanagan, M.T., Chen, Y.L., Balachandran, U., Guo, J., Lewis, J.A.: Engineered flux-pinning centres in Bi2Sr2CaCu2Ox and TIBa2Ca2Cu3Ox superconductors. J. Electron. Mater. 24, 1961–1966 (1995). https://doi.org/10.1007/BF02653017

    Article  CAS  ADS  Google Scholar 

  37. Kazin, P.E., Poltavets, V.V., Poltavets, O.N., Kovalevsky, A.A., Tretyakov, Y.D., Jansen, M.: Formation of Bi-2212 phase and phase assemblage in Ga-doped BSCCO system. Phys. C Supercond its Appl. 324, 30–38 (1999). https://doi.org/10.1016/S0921-4534(99)00444-X

    Article  CAS  ADS  Google Scholar 

  38. Awana, V.P.S., Agarwal, S.K., Kumaraswamy, B.V., Singh, B.P., Narlikar, A.V.: Effect of 3d metallic dopants on superconductivity of the Bi 2CaSr2Cu2O8 system. Supercond Sci. Technol. 5, 376–380 (1992). https://doi.org/10.1088/0953-2048/5/6/010

    Article  CAS  ADS  Google Scholar 

  39. Sarun, P.M., Shabna, R., Vinu, S., Biju, A., Syamaprasad, U.: Highly enhanced superconducting properties of Bi-2212 by Y and pb co-doping. 404, 1602–1606 (2009). https://doi.org/10.1016/j.physb.2009.01.023

  40. Gharahcheshmeh, M.H., Galstyan, E., Xu, A., Kukunuru, J., Katta, R., Zhang, Y., Majkic, G., Li, X.-F., Selvamanickam, V.: Superconducting transition width (∆Tc) characteristics of 25 mol% Zr-added (Gd, Y)Ba2Cu3O7–δ superconductor tapes with high in-field critical current density at 30 K. Supercond Sci. Technol. 30, 015016 (2017). https://doi.org/10.1088/0953-2048/30/1/015016

    Article  CAS  ADS  Google Scholar 

  41. Gündoğmuş, H., Özçelik, B., Sotelo, A., Madre, M.A.: Effect of Yb-substitution on thermally activated flux creep in the Bi2Sr2CaCu2 – xYbxOy superconductors. J. Mater. Sci. Mater. Electron. 24, 2568–2575 (2013). https://doi.org/10.1007/s10854-013-1135-0

    Article  CAS  Google Scholar 

  42. ÖZTORNACI, U.: The effect of nano-sized metallic au addition on structural and magnetic properties of Bi1.8Sr2AuxCa1.1Cu2.1Oy (Bi-2212) ceramics. Ceram. Int. 43, 4545–4550 (2017). https://doi.org/10.1016/j.ceramint.2016.12.109

    Article  CAS  Google Scholar 

  43. Bean, C.P.: Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962). https://doi.org/10.1103/PhysRevLett.8.250

    Article  ADS  Google Scholar 

  44. Kumar, N.D., Rajasekharan, T., Muraleedharan, K., Banerjee, A., Seshubai, V.: Unprecedented current density to high fields in YBa2Cu3O7–δ superconductor through nano-defects generated by preform optimization in infiltration. (2010). https://doi.org/10.1088/0953-2048/23/10/105020

  45. Devendra Kumar, N., Raju, M.S., Pavan Kumar Naik, P., Rajasekharan, S., Seshubai, T.: Effect of preform compaction pressure on the final microstructures and superconducting properties of YBa2Cu3O7–δ superconductors fabricated by directionally solidified Preform optimized infiltration growth process. J. Low Temp. Phys. 174, 113–127 (2014). https://doi.org/10.1007/s10909-013-0955-x

    Article  CAS  ADS  Google Scholar 

  46. Muralidhar, M., Jirsa, M., Sakai, N., Murakami, M.: Progress in melt-processed (Nd-Sm-Gd)Ba2Cu3Oy superconductors. Supercond Sci. Technol. 16 (2003). https://doi.org/10.1088/0953-2048/16/1/201

  47. Lacey, D.E., Wilson, J.A.: Low-field flux-creep measurements on YBCO and BSCCO. Supercond Sci. Technol. 5, 724–731 (1992). https://doi.org/10.1088/0953-2048/5/12/005

    Article  CAS  ADS  Google Scholar 

  48. Salamati, H., Kameli, P.: AC susceptibility study of YBCO thin film and BSCCO bulk superconductors. J. Magn. Magn. Mater. 278, 237–243 (2004). https://doi.org/10.1016/j.jmmm.2003.12.1311

    Article  CAS  ADS  Google Scholar 

  49. Sharma, D., Kumar, R., Awana, V.P.S.: DC and AC susceptibility study of sol-gel synthesized Bi2Sr2CaCu2O8+δ superconductor. Ceram. Int. 39, 1143–1152 (2013). https://doi.org/10.1016/j.ceramint.2012.07.038

    Article  CAS  Google Scholar 

  50. Zouaoui, M., Ghattas, A., Annabi, M., Ben Azzouz, F., Ben Salem, M.: Effect of nano-size ZrO2 addition on the flux pinning properties of (Bi, Pb)-2223 superconductor. Supercond Sci. Technol. 21 (2008). https://doi.org/10.1088/0953-2048/21/12/125005

  51. Koblischka, M.R.: Nanoengineering of flux pinning sites in high-Tc superconductors. Tsinghua Sci. Technol. 8, 280–291 (2003)

    CAS  Google Scholar 

  52. Klein, L., Yacoby, E.R., Yeshurun, Y., Erb, A., Müller-Vogt, G., Breit, V., Wühl, H.: Peak effect and scaling of irreversible properties in untwinned Y-Ba-Cu-O crystals. Phys. Rev. B. 49, 4403–4406 (1994). https://doi.org/10.1103/PhysRevB.49.4403

    Article  CAS  ADS  Google Scholar 

  53. Goto, T., Inagaki, K., Watanabe, K.: Critical current density in filamentary (nd, Sm, Eu, Gd)-Ba-Cu-O superconductors prepared by a solution spinning method. Phys. C Supercond its Appl. 330, 51–57 (2000). https://doi.org/10.1016/S0921-4534(99)00608-5

    Article  CAS  ADS  Google Scholar 

  54. Murakami, M., Yoo, S.I.: Comparative study of critical current densities and flux pinning among a flux-grown NdBa2Cu3Oy single crystal, melt-textured Nd-Ba-Cu-O, and Y-Ba-Cu-O bulks. Phys. Rev. B - Condens. Matter Mater. Phys. 59, 1514–1527 (1999). https://doi.org/10.1103/PhysRevB.59.1514

    Article  ADS  Google Scholar 

  55. Vinu, S., Sarun, P.M., Shabna, R., Biju, A., Syamaprasad, U.: Enhancement of flux pinning and Anderson-Dew-Hughes pinning analysis in Bi1.6Pb0.5Sr2–x TbxCa1.1Cu2.1O8+δ superconductor. J. Alloys Compd. 477, 13–16 (2009). https://doi.org/10.1016/j.jallcom.2008.10.033

    Article  CAS  Google Scholar 

  56. Kramer, E.J.: Scaling laws for flux pinning in hard superconductors. J. Appl. Phys. 44, 1360–1370 (1973). https://doi.org/10.1063/1.1662353

    Article  CAS  ADS  Google Scholar 

  57. Rose, R.A., Ota, S.B., de Groot, P.A.J., Jayaram, B.: Scaling of the vortex pinning force in Bi2Sr2CaCu2O8 + y. Phys. C Supercond its Appl. 170, 51–55 (1990). https://doi.org/10.1016/0921-4534(90)90227-6

    Article  CAS  ADS  Google Scholar 

  58. Leveratto, A., Armenio, A.A., Traverso, A., De Marzi, G., Celentano, G., Malagoli, A.: Transport current and magnetization of Bi-2212 wires above liquid helium temperature for cryogen-free applications. Sci. Rep. 11, 1–9 (2021). https://doi.org/10.1038/s41598-021-91222-2

    Article  CAS  Google Scholar 

  59. Koshelev, A.E., Sadovskyy, I.A., Phillips, C.L., Glatz, A.: Optimization of vortex pinning by nanoparticles using simulations of the time-dependent Ginzburg-Landau model. Phys. Rev. B. 93, 1–5 (2016). https://doi.org/10.1103/PhysRevB.93.060508

    Article  CAS  Google Scholar 

  60. Civale, L.: Vortex pinning and creep in high-temperature superconductors with columnar defects. Supercond Sci. Technol. 10 (1997). https://doi.org/10.1088/0953-2048/10/7A/003

  61. Zhang, S., Liang, M., Li, C., Hao, Q., Feng, J., Zhang, P.: Enhanced flux pinning properties in Bi-2212 high temperature superconductors with nano-sized precipitates. Mater. Lett. 157, 197–200 (2015). https://doi.org/10.1016/j.matlet.2015.05.096

    Article  CAS  Google Scholar 

  62. Qiu, L.P., Zhang, Y.R., Gao, S.L., Zheng, Q.H., Zhang, T.T., Cheng, G.T., Cao, S., ze, Hang, W.P., Ramakrishna, S., Long, Y.Z.: Fabrication and magnetic properties of SiO2 nanoparticles-doped BSCCO superconducting nanofibers by solution blow spinning. Phys. C Supercond its Appl. 608, 1354251 (2023). https://doi.org/10.1016/j.physc.2023.1354251

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

VSB acknowledges DST- SERB for funding of a project, EMR 2016/006004. PKV is grateful to DST for fellowship. The authors are grateful to Mr. U. Govind and Dr. M. Sai Rama Krishna, IITH, Hyderabad for the TEM images of WO3 nanoparticles. Useful discussions with Dr. U. Syamaprasad, NIIST and Prof. S. Srinath, UoH are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Seshu Bai.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P.K., Reddy, B.V., Rajasekharan, T. et al. Two-Phase Microstructure Generated by Reaction of Nano WO3 Addition and its Effect on Flux Pinning in Bi 2212 Composites. J Supercond Nov Magn 37, 1–14 (2024). https://doi.org/10.1007/s10948-023-06675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06675-5

Keywords

Navigation