Skip to main content
Log in

Quench Detection of Insulated HTS Magnets Based on Co-wound Tape Compensation Method and Balance Bridge Compensation Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Quench detection is vital for the safe operation of insulated high-temperature superconducting (HTS) magnets. However, due to slow quench propagation and susceptibility of terminal voltage to current interference, it is difficult to detect quench for an insulated HTS magnet. Co-wound tape (CWT) compensation method and the balance bridge (BB) compensation method show improvements to the voltage method. Both methods can eliminate the noise generated by induced voltage with fast response and high convenience. In this work, the CWT compensation method and BB compensation method are used to study the quench detection of an insulated HTS magnet under various operating conditions. CWT compensation and BB compensation methods, having a signal-to-noise ratio of 45 and 39 dB, respectively, outperform the conventional voltage detection method (− 13 dB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Badel, A., Tixador, P., Simiand, G., Exchaw, O.: Quench detection system for twin coils HTS SMES. Cryogenics 50, 674–681 (2010)

    Article  CAS  ADS  Google Scholar 

  2. Shen, T., Bosque, E., Davis, D., et al.: Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2. Sci. Rep. 9, 10170 (2019)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  3. Mitchell, N., Zheng, J., Vorpahl, C., et al.: Superconductors for fusion: a roadmap Supercond. Sci. Technol. 34, 103001 (2021)

    ADS  Google Scholar 

  4. Sykes, A., Costley, A.E., Windsor, C.G., et al.: Compact fusion energy based on the spherical tokamak. Nucl. Fusion 58, 016039 (2018)

    Article  ADS  Google Scholar 

  5. Morandi, A., Gholizad, B., Fabbri, M.: Design and performance of a 1 MW-5 s high temperature superconductor magnetic energy storage system Supercond. Sci. Technol. 29, 015014 (2015)

    ADS  Google Scholar 

  6. Rossi, L., Badel, A., Bajas, H., et al.: The EuCARD2 future magnets program for particle accelerator high-field dipoles: review of results and next steps IEEE trans. Appl. Supercond. 28, 1–10 (2017)

    Google Scholar 

  7. Yokoyama, S., Lee, J., Imura, T., et al.: Research and development of the high stable magnetic field ReBCO coil system fundamental technology for MRI IEEE trans. Appl. Supercond. 27, 1–4 (2016)

    Google Scholar 

  8. Bai, H., Bird, M.D., Cooley, L.D., et al.: The 40 T superconducting magnet project at the national high magnetic field laboratory IEEE Trans. Appl. Supercond. 30, 1–5 (2020)

    Google Scholar 

  9. Sumption, M.D., Majoros, M., Susner, M., et al.: Thermal diffusion and quench propagation in YBCO pancake coils wound with ZnO and Mylar insulations Supercond. Sci. Technol. 23, 075004 (2010)

    ADS  Google Scholar 

  10. Song, H., Gagnon, K., Schwartz, J.: Quench behavior of conduction-cooled Y Ba2Cu3O7− δ coated conductor pancake coils stabilized with brass or copper Supercond. Sci. Technol. 23, 065021 (2010)

    ADS  Google Scholar 

  11. Wang, X., Trociewitz, U.P., Schwartz, J.: Self-field quench behaviour of YBa2Cu3O7− δ coated conductors with different stabilizers Supercond. Sci. Technol. 22, 085005 (2009)

    ADS  Google Scholar 

  12. Liao, Y., Tang, Y., Shi, J., et al.: Signal de-noising of quench detection by real-time wavelet analysis algorithm for HTS coil and magnet IEEE Trans. Appl. Supercond. 27, 1–5 (2016)

    Google Scholar 

  13. Joo, J.H., Sano, H., Kim, S.B., et al.: Development of quench detection method based on normal transition behaviors for HTS coils IEEE trans. Appl. Supercond. 19, 2415–2418 (2009)

    Article  CAS  ADS  Google Scholar 

  14. Nie, S., Shi, J., Deng, J., et al.: Quench detection design for HTS SMES IEEE Trans. Appl. Supercond. 25, 1–5 (2015)

    Article  Google Scholar 

  15. Marchevsky, M., Prestemon, S., Lobkis, O., et al.: Ultrasonic waveguides for quench detection in HTS magnets IEEE Trans. Appl. Supercond. 32, 1–5 (2022)

    Article  Google Scholar 

  16. Ravaioli, E., Davis, D., Marchevsky, M., et al.: A new quench detection method for HTS magnets: stray-capacitance change monitoring. Phys. Scr. 95, 015002 (2019)

    Article  ADS  Google Scholar 

  17. Chen, B., Hu, Y., Li, J., et al.: Research on quench detection method using radio frequency wave technology IEEE Trans. Appl. Supercond. 30, 1–5 (2019)

    Google Scholar 

  18. Scurti, F., Ishmael, S., Flanagan, G., et al.:  Quench detection for high temperature superconductor magnets: a novel technique based on Rayleigh-backscattering interrogated optical fibers Supercond. Sci. Technol. 29, 03LT01 (2016)

  19. Gyuráki, R., Schreiner, F., Benkel, T., et al.: Fluorescent thermal imaging of a quench in insulated and non-insulated REBCO-wound pancake coils following a heater pulse at 77 K Supercond. Sci. Technol. 33, 035006 (2020)

    ADS  Google Scholar 

  20. Kim, D., Kim, J.G., Kim, A.R., et al.: Quench detection method of HTS model coil using a series-type thermocouple IEEE Trans. Appl. Supercond. 21, 2462–2465 (2011)

    Article  CAS  ADS  Google Scholar 

  21. Bykovskiy, N., Uglietti, D., Bruzzone, P., et al.: Co-wound superconducting wire for quench detection in fusion magnets IEEE Trans. Appl. Supercond. 32, 1–5 (2022)

    Article  Google Scholar 

  22. Toriyama, H., Nomoto, A., Ichikawa, T., et al.: Quench protection system for an HTS coil that uses Cu tape co-wound with an HTS tape Supercond. Sci. Technol. 32, 115016 (2019)

    CAS  ADS  Google Scholar 

  23. Coatanea-Gouachet, M., Carrillo, D., Lee, S., et al.: Electromagnetic quench detection in ITER superconducting magnet systems IEEE Trans. Appl. Supercond. 25, 1–7 (2015)

    Article  Google Scholar 

  24. Fu, P., Song, Z.Q., Gao, G., et al.: Quench protection of the poloidal field superconducting coil system for the EAST tokamak. Nucl. Fusion 46, S85 (2006)

    Article  CAS  Google Scholar 

  25. Wang, T., Hu, Y., Liu, H., et al.: Quench detection design for CFETR CSMC Fusion Sci. Technol. 74, 229–237 (2018)

    Google Scholar 

  26. Feng L, Yi S, Fang L, et al.:  Quench detection and protection system design and analysis of the 7 T superconducting magnet Chin. Phys. C 34 492 (2010)

  27. Oomen, M.P., Rieger, J., Leghissa, M., et al.: Dynamic resistance in a slab-like superconductor with Jc (B) dependence Supercond. Sci. Technol. 12, 382 (1999)

    CAS  ADS  Google Scholar 

  28. Oomen, M.P., Rieger, J., Hussennether, V., et al.: AC loss in high-temperature superconducting conductors, cables and windings for power devices Supercond. Sci. Technol. 17, S394 (2004)

    CAS  Google Scholar 

  29. Brooks, J.M., Ainslie, M.D., Jiang, Z., et al.: The transient voltage response of ReBCO coated conductors exhibiting dynamic resistance Supercond. Sci. Technol. 33, 035007 (2020)

    CAS  ADS  Google Scholar 

  30. Zhang, H., Shen, B., Chen, X.Y., et al.: Dynamic resistance and dynamic loss in a ReBCO superconductor. Supercond. Sci. Technol. 35, 113001 (2022). https://doi.org/10.1088/1361-6668/ac95d5

    Article  ADS  Google Scholar 

  31. Jiang, Z., Toyomoto, R., Amemiya, N., et al.: Dynamic resistance measurements in a GdBCO-coated conductor IEEE Trans. Appl. Supercond. 27, 1–5 (2016)

    CAS  Google Scholar 

  32. Jiang, Z., Toyomoto, R., Amemiya, N., et al.:  Dynamic resistance of a high-Tc coated conductor wire in a perpendicular magnetic field at 77 K Supercond. Sci. Technol. 30 03LT01 (2017)

  33. Hong, W., Hu, L., Wu, Y., et al.: A method to evaluate the inductance properties of REBCO excitation process based on magnetic energy density and T-A formula Supercond. Sci. Technol. 36, 075010 (2023)

    ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52077134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianjun Zhang or Zhuyong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Zhang, Q., Zhao, Y. et al. Quench Detection of Insulated HTS Magnets Based on Co-wound Tape Compensation Method and Balance Bridge Compensation Method. J Supercond Nov Magn 37, 15–23 (2024). https://doi.org/10.1007/s10948-023-06672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06672-8

Keywords

Navigation