Skip to main content
Log in

Effect of Annealing on Magnetization Reversal and Spin Dynamics in Co40Fe40B20 Thin Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Gilbert damping is one of the critical parameters in magnetic thin films for developing low-power spintronic devices, and \({\mathrm{Co}}_{40}{\mathrm{Fe}}_{40}{\mathrm{B}}_{20}\) (CFB) is one of the sought-after materials in this regard. Here, we report the effect of annealing on the structural, magnetization reversal, and spin dynamics of CFB thin films. X-ray diffraction results show that as-deposited films are amorphous and retain their nature upon annealing up to 350 °C. Magnetization reversal results exhibit anisotropic behavior in both as-deposited and annealed samples. The random anisotropy model explains the change in coercivity in the transverse axis with respect to the longitudinal axis for CFB annealed at 350 °C. Broadband ferromagnetic resonance spectra reveal that the damping parameter decreases with increasing annealing temperature. Ultra-low damping of 0.004 is obtained with annealing at 350 °C. Surface topographical images from atomic force microscopy are rewarded for supporting the observed variation of the damping constant. Our systematic study gives an insight into CFB magnetization reversal and dynamics for developing ultra-low damping magnetic thin films via annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Žutić, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004). https://doi.org/10.1103/RevModPhys.76.323

    Article  ADS  Google Scholar 

  2. Hoffmann, A., Bader, S.D.: Opportunities at the frontiers of spintronics. Phys. Rev. Appl. 4, 047001 (2015). https://doi.org/10.1103/PhysRevApplied.4.047001

    Article  ADS  Google Scholar 

  3. Kittel, C.: On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948). https://doi.org/10.1103/PhysRev.73.155

    Article  ADS  Google Scholar 

  4. Suhl, H.: Theory of the magnetic damping constant. IEEE Trans. Magn. 34, 1834–1838 (1998). https://doi.org/10.1109/20.706720

    Article  ADS  Google Scholar 

  5. Tsoi, M., Jansen, A.G.M., Bass, J., Chiang, W.-C., Seck, M., Tsoi, V., Wyder, P.: Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998). https://doi.org/10.1103/PhysRevLett.80.4281

    Article  ADS  Google Scholar 

  6. Slonczewski, J.: Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261–L268 (1999). https://doi.org/10.1016/S0304-8853(99)00043-8

    Article  ADS  Google Scholar 

  7. Kittel, C.: Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequencies. Phys. Rev. 70, 281–290 (1946). https://doi.org/10.1103/PhysRev.70.281

    Article  ADS  Google Scholar 

  8. Sparks, M., Loudon, R., Kittel, C.: Ferromagnetic relaxation. I. Theory of the relaxation of the uniform precession and the degenerate spectrum in insulators at low temperatures. Phys. Rev. 122, 791–803 (1961). https://doi.org/10.1103/PhysRev.122.791

  9. Hurben, M.J., Patton, C.E.: Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films. J. Appl. Phys. 83, 4344–4365 (1998). https://doi.org/10.1063/1.367194

    Article  ADS  Google Scholar 

  10. Platow, W., Anisimov, A.N., Dunifer, G.L., Farle, M., Baberschke, K.: Correlations between ferromagnetic-resonance linewidths and sample quality in the study of metallic ultrathin films. Phys. Rev. B. 58, 5611–5621 (1998). https://doi.org/10.1103/PhysRevB.58.5611

    Article  ADS  Google Scholar 

  11. Yang, A., Imrane, H., Lou, J., Kirkland, J., Vittoria, C., Sun, N., Harris, V.G.: Effects of boron addition to the atomic structure and soft magnetic properties of FeCoB films. J. Appl. Phys. 103, 07E736 (2008). https://doi.org/10.1063/1.2838226

    Article  Google Scholar 

  12. Wang, Y.-H., Chen, W.-C., Yang, S.-Y., Shen, K.-H., Park, C., Kao, M.-J., Tsai, M.-J.: Interfacial and annealing effects on magnetic properties of CoFeB thin films. J. Appl. Phys. 99, 08M307 (2006). https://doi.org/10.1063/1.2176108

    Article  Google Scholar 

  13. Teixeira, J.M., Ventura, J., Carpinteiro, F., Araujo, J.P., Sousa, J.B., Wisniowski, P., Freitas, P.P.: The effect of pinhole formation/growth on the tunnel magnetoresistance of MgO-based magnetic tunnel junctions. J. Appl. Phys. 106, 073707 (2009). https://doi.org/10.1063/1.3236512

    Article  ADS  Google Scholar 

  14. Dimopoulos, T., Gieres, G., Wecker, J., Wiese, N., Sacher, M.D.: Thermal annealing of junctions with amorphous and polycrystalline ferromagnetic electrodes. J. Appl. Phys. 96, 6382–6386 (2004). https://doi.org/10.1063/1.1808899

    Article  ADS  Google Scholar 

  15. Ikeda, S., Koizumi, R., Sato, H., Yamanouchi, M., Miura, K., Mizunuma, K., Gan, H., Matsukura, F., Ohno, H.: Boron composition dependence of magnetic anisotropy and tunnel magnetoresistance in MgO/CoFe(B) based stack structures. IEEE Trans. Magn. 48, 3829–3832 (2012). https://doi.org/10.1109/TMAG.2012.2203588

    Article  ADS  Google Scholar 

  16. Miyajima, T., Ibusuki, T., Umehara, S., Sato, M., Eguchi, S., Tsukada, M., Kataoka, Y.: Transmission electron microscopy study on the crystallization and boron distribution of CoFeB/MgO/CoFeB magnetic tunnel junctions with various capping layers. Appl. Phys. Lett. 94, 122501 (2009). https://doi.org/10.1063/1.3106624

    Article  ADS  Google Scholar 

  17. Wang, Z., Saito, M., McKenna, K.P., Fukami, S., Sato, H., Ikeda, S., Ohno, H., Ikuhara, Y.: Atomic-scale structure and local chemistry of CoFeB–MgO magnetic tunnel junctions. Nano Lett. 16, 1530–1536 (2016). https://doi.org/10.1021/acs.nanolett.5b03627

    Article  ADS  Google Scholar 

  18. Cardoso, S., Cavaco, C., Ferreira, R., Pereira, L., Rickart, M., Freitas, P.P., Franco, N., Gouveia, J., Barradas, N.P.: Characterization of CoFeB electrodes for tunnel junctions. J. Appl. Phys. 97, 10C916 (2005). https://doi.org/10.1063/1.1853833

    Article  Google Scholar 

  19. Bilzer, C., Devolder, T., Kim, J.-V., Counil, G., Chappert, C., Cardoso, S., Freitas, P.P.: Study of the dynamic magnetic properties of soft CoFeB films. J. Appl. Phys. 100, 053903 (2006). https://doi.org/10.1063/1.2337165

    Article  ADS  Google Scholar 

  20. Conca, A., Greser, J., Sebastian, T., Klingler, S., Obry, B., Leven, B., Hillebrands, B.: Low spin-wave damping in amorphous Co 40 Fe 40 B 20 thin films. J. Appl. Phys. 113, 213909 (2013). https://doi.org/10.1063/1.4808462

    Article  ADS  Google Scholar 

  21. Conca, A., Papaioannou, E.T., Klingler, S., Greser, J., Sebastian, T., Leven, B., Lösch, J., Hillebrands, B.: Annealing influence on the Gilbert damping parameter and the exchange constant of CoFeB thin films. Appl. Phys. Lett. 104, 182407 (2014). https://doi.org/10.1063/1.4875927

    Article  ADS  Google Scholar 

  22. Xu, F., Phuoc, N.N., Zhang, X., Ma, Y., Chen, X., Ong, C.K.: Tuning of the magnetization dynamics in as-sputtered FeCoSiN thin films by various sputtering gas pressures. J. Appl. Phys. 104, 093903 (2008). https://doi.org/10.1063/1.3006006

    Article  ADS  Google Scholar 

  23. Xu, F., Huang, Q., Liao, Z., Li, S., Ong, C.K.: Tuning of magnetization dynamics in sputtered CoFeB thin film by gas pressure. J. Appl. Phys. 111, 07A304 (2012). https://doi.org/10.1063/1.3670605

    Article  Google Scholar 

  24. Jhajhria, D., Pandya, D.K., Chaudhary, S.: Interplay of composition and anisotropy on evolution of microstructural, static and dynamic magnetic properties of CoFeB thin films on annealing. J. Alloys Compd. 763, 728–735 (2018). https://doi.org/10.1016/j.jallcom.2018.05.322

    Article  Google Scholar 

  25. Liu, X., Zhang, W., Carter, M.J., Xiao, G.: Ferromagnetic resonance and damping properties of CoFeB thin films as free layers in MgO-based magnetic tunnel junctions. J. Appl. Phys. 110, 033910 (2011). https://doi.org/10.1063/1.3615961

    Article  ADS  Google Scholar 

  26. Hayakawa, J., Ikeda, S., Lee, Y.M., Sasaki, R., Meguro, T., Matsukura, F., Takahashi, H., Ohno, H.: Current-driven magnetization switching in CoFeB/MgO/CoFeB magnetic tunnel junctions. Jpn. J. Appl. Phys. 44, L1267–L1270 (2005). https://doi.org/10.1143/JJAP.44.L1267

    Article  ADS  Google Scholar 

  27. Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004). https://doi.org/10.1038/nmat1256

    Article  ADS  Google Scholar 

  28. Park, C., Zhu, J.-G., Moneck, M.T., Peng, Y., Laughlin, D.E.: Annealing effects on structural and transport properties of rf-sputtered CoFeB∕MgO∕CoFeB magnetic tunnel junctions. J. Appl. Phys. 99, 08A901 (2006). https://doi.org/10.1063/1.2165141

    Article  Google Scholar 

  29. O’Dell, R.A., Phillips, A.B., Georgiev, D.G., Jones, J.G., Brown, G.J., Heben, M.J.: Post-deposition annealing effects on ferromagnetic CoFeB thin films. IEEE Trans. Magn. 54, 1–7 (2018). https://doi.org/10.1109/TMAG.2018.2845394

    Article  Google Scholar 

  30. Cho, J., Jung, J., Cho, S.-Y., You, C.-Y.: Effect of annealing temperature on exchange stiffness of CoFeB thin films. J. Magn. Magn. Mater. 395, 18–22 (2015). https://doi.org/10.1016/j.jmmm.2015.06.073

    Article  ADS  Google Scholar 

  31. Arteaga-Duran, A., Saenz-Hernandez, R., Santillan-Rodriguez, C., Botello-Zubiate, M., Grijalva-Castillo, M., Matutes-Aquino, J.: Effects of thickness and thermal annealing of FeCoB thin films on ferromagnetic resonance and microwave propagation properties. IEEE Trans. Magn. 55, 1–3 (2019). https://doi.org/10.1109/TMAG.2018.2872126

    Article  Google Scholar 

  32. Harres, A., Mallmann, T.A., Gamino, M., Correa, M.A., Viegas, A.D.C., da Silva, R.B.: Magnetization reversal processes in amorphous CoFeB thin films. J. Magn. Magn. Mater. 552, 169135 (2022). https://doi.org/10.1016/j.jmmm.2022.169135

    Article  Google Scholar 

  33. Dwivedi, J., Gupta, M., Reddy, V.R., Mishra, A., Pandit, P., Gupta, A.: Anomalous behavior of magnetic anisotropy of amorphous Co 40 Fe 43 B 17 thin film sandwiched between Mo layers. IEEE Trans. Magn. 57, 1–5 (2021). https://doi.org/10.1109/TMAG.2020.3012600

    Article  Google Scholar 

  34. Barwal, V., Husain, S., Behera, N., Goyat, E., Chaudhary, S.: Growth dependent magnetization reversal in Co 2 MnAl full Heusler alloy thin films. J. Appl. Phys. 123, 053901 (2018). https://doi.org/10.1063/1.5004425

    Article  ADS  Google Scholar 

  35. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 240, 599–642 (1948). https://doi.org/10.1098/rsta.1948.0007

  36. Methfessel, S., Middelhoek, S., Thomas, H.: Partial rotation in permalloy films. J. Appl. Phys. 32, 1959–1963 (1961). https://doi.org/10.1063/1.1728270

    Article  ADS  Google Scholar 

  37. McCord, J., Schäfer, R., Mattheis, R., Barholz, K.-U.: Kerr observations of asymmetric magnetization reversal processes in CoFe/IrMn bilayer systems. J. Appl. Phys. 93, 5491–5497 (2003). https://doi.org/10.1063/1.1562732

    Article  ADS  Google Scholar 

  38. Smith, D.O., Cohen, M.S., Weiss, G.P.: Oblique-incidence anisotropy in evaporated permalloy films. J. Appl. Phys. 31, 1755–1762 (1960). https://doi.org/10.1063/1.1735441

    Article  ADS  Google Scholar 

  39. Chowdhury, N., Mallick, S., Mallik, S., Bedanta, S.: Study of magnetization relaxation in Co thin films prepared by substrate rotation. Thin. Solid Films. 616, 328–334 (2016). https://doi.org/10.1016/j.tsf.2016.08.043

    Article  ADS  Google Scholar 

  40. Chowdhury, N., Bedanta, S.: Controlling the anisotropy and domain structure with oblique deposition and substrate rotation. AIP Adv. 4, 027104 (2014). https://doi.org/10.1063/1.4865248

    Article  ADS  Google Scholar 

  41. Garcia, D., Munoz, J.L., Kurlyandskaya, G., Vazquez, M., Ali, M., Gibbs, M.R.J.: Magnetic domains and transverse induced anisotropy in magnetically soft CoFeB amorphous thin films. IEEE Trans. Magn. 34, 1153–1155 (1998). https://doi.org/10.1109/20.706424

    Article  ADS  Google Scholar 

  42. Idigoras, O., Suszka, A.K., Vavassori, P., Landeros, P., Porro, J.M., Berger, A.: Collapse of hard-axis behavior in uniaxial Co films. Phys. Rev. B. 84, 132403 (2011). https://doi.org/10.1103/PhysRevB.84.132403

    Article  ADS  Google Scholar 

  43. Alben, R., Becker, J.J., Chi, M.C.: Random anisotropy in amorphous ferromagnets. J. Appl. Phys. 49, 1653–1658 (1978). https://doi.org/10.1063/1.324881

    Article  ADS  Google Scholar 

  44. Diaz, J., Hamdan, N., Jalil, P., Hussain, Z., Valvidares, S.M., Alameda, J.M.: Understanding the magnetic anisotropy in Fe-Si amorphous alloys. IEEE Trans. Magn. 38, 2811–2813 (2002). https://doi.org/10.1109/TMAG.2002.803566

    Article  ADS  Google Scholar 

  45. Kipgen, L., Fulara, H., Raju, M., Chaudhary, S.: In-plane magnetic anisotropy and coercive field dependence upon thickness of CoFeB. J. Magn. Magn. Mater. 324, 3118–3121 (2012). https://doi.org/10.1016/j.jmmm.2012.05.012

    Article  ADS  Google Scholar 

  46. Woltersdorf, G.: Spin-pumping and two-magnon scattering in magnetic multilayers, (2001)

  47. Mankovsky, S., Ködderitzsch, D., Woltersdorf, G., Ebert, H.: First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys. Phys. Rev. B. 87, 014430 (2013). https://doi.org/10.1103/PhysRevB.87.014430

    Article  ADS  Google Scholar 

  48. Kim, J.-S., Kim, G., Jung, J., Jung, K., Cho, J., Kim, W.-Y., You, C.-Y.: Control of crystallization and magnetic properties of CoFeB by boron concentration. Sci. Rep. 12, 4549 (2022). https://doi.org/10.1038/s41598-022-08407-6

    Article  ADS  Google Scholar 

  49. Gupta, A., Bhagat, N., Principi, G., Hernando, A.: Formation of nanocrystalline phases by crystallization of metallic glasses. J. Magn. Magn. Mater. 133, 291–294 (1994). https://doi.org/10.1016/0304-8853(94)90549-5

    Article  ADS  Google Scholar 

  50. Hofmann, B., Kronmüller, H.: Stress-induced magnetic anisotropy in nanocrystalline FeCuNbSiB alloy. J. Magn. Magn. Mater. 152, 91–98 (1996). https://doi.org/10.1016/0304-8853(95)00447-5

    Article  ADS  Google Scholar 

  51. Suzuki, Y., Haimovich, J., Egami, T.: Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. Phys. Rev. B. 35, 2162–2168 (1987). https://doi.org/10.1103/PhysRevB.35.2162

    Article  ADS  Google Scholar 

  52. Hindmarch, A.T., Rushforth, A.W., Campion, R.P., Marrows, C.H., Gallagher, B.L.: Origin of in-plane uniaxial magnetic anisotropy in CoFeB amorphous ferromagnetic thin films. Phys. Rev. B. 83, 212404 (2011). https://doi.org/10.1103/PhysRevB.83.212404

    Article  ADS  Google Scholar 

  53. West, F.G.: Uniaxial anisotropy due to magnetoelastic energy in constrained polycrystalline films. J. Appl. Phys. 35, 1827–1840 (1964). https://doi.org/10.1063/1.1713750

    Article  ADS  Google Scholar 

  54. Wang, Y., Wei, D., Gao, K.-Z., Cao, J., Wei, F.: The role of inhomogeneity of perpendicular anisotropy in magnetic properties of ultra thin CoFeB film. J. Appl. Phys. 115, 053901 (2014). https://doi.org/10.1063/1.4863139

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CM would like to acknowledge funding from the SERB-Early Career Research Award (ECR/2018/002664) and the Board of Research in Nuclear Sciences, India (58/14/04/2022-BRNS). AH would like to acknowledge funding from the Board of Research in Nuclear Sciences, India (DAE-YSRA 59/20/05/2021-BRNS). KS would like to acknowledge the fellowship from the SERB project (ECR/2018/002664). BP would like to acknowledge a fellowship from the Department of Science and Technology, India (DST/INSPIRE Fellowship/ [IF180927]). The authors would like to thank Miss. Savita Sahu for helping in measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Murapaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriram, K., Pala, J., Mondal, R. et al. Effect of Annealing on Magnetization Reversal and Spin Dynamics in Co40Fe40B20 Thin Films. J Supercond Nov Magn 36, 155–162 (2023). https://doi.org/10.1007/s10948-022-06442-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06442-y

Keywords

Navigation