Skip to main content
Log in

A Study of Structural, Electrical, and Magnetic Properties of (1-x) Bi0.9La0.05Sr0.05FeO3 – (x) BaTi0.8Zr0.2O3 [x = 0.05, 0.1, and 0.15] Composite Systems

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Herein, polycrystalline composites of the type (1-x) Bi0.9La0.05Sr0.05FeO3 (BLSFO)– (x)BaTi0.8Zr0.2O3 (BTZO) with x = 0.05, 0.1, and 0.15 synthesized via high temperature solid state reaction route are reported. The structural, microstructural, electrical, and magnetic characteristics were outlined. The presence of BLSFO (R 3 c) and BTZO phase (P 4 m m) in the composite was confirmed by carrying out Rietveld refinement of X-ray diffraction (XRD) data. From the field effect scanning electron microscopic (FESEM) images, non-homogeneous grains and grain boundary were identified. The study of energy-dispersive analysis of X-ray (EDAX) spectrum revealed the elemental composition of these composites with absence of any foreign element. Furthermore, room temperature electrical properties of these composite systems were emphasized. Dielectric constant and loss value of all the composites decreases as frequency increases attributed to Maxwell–Wagner type of relaxation. The electrical modulus and impedance spectrum demonstrates a deviation from an ideal Debye-like relaxation process. The P-E hysteresis loop of composite improves as BTZO concentration increases arising from better ferroelectric nature of BTZO ceramic. As the BTZO content increases, the M-H hysteresis loop of composites makes transition from ferromagnetic to paramagnetic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hill, N.A.: J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  2. Ramesh, R., Spaldin, N.A.: Nature Mater. 6, 21 (2007)

    Article  ADS  Google Scholar 

  3. Slimani, Y., Almessiere, M.A., Shirsath, S.E., Hannachi, E., Yasin, G., Baykal, A., Ercan, B.O.: J. Magn. Magn. Mater. 510, 166933 (2020)

    Article  Google Scholar 

  4. Slimani, Y., Shirsath, S.E., Hannachi, E., et al.: J. Am. Ceram. Soc. 104, 5648–5658 (2021)

    Article  Google Scholar 

  5. Sati, P.C., Kumar, M., Chhoker, S.: J. Mater. Sci. Mater. Electron. 26, 530 (2015)

    Article  Google Scholar 

  6. Prellier, W., Singh, M.P., Murugavelet, P.: J. Phys.: Condens. Matter. 17, 7753 (2005)

    ADS  Google Scholar 

  7. Qi, X., Dho, J., Tomov, R., Blamire, M.G., Driscoll, J.L.M.: Appl. Phys. Lett. 86, 062903 (2005)

    Article  ADS  Google Scholar 

  8. Chen, C.C., Liu, Z.X., Wang, G., Yan, Y.L.: Bull. Mater. Sci. 37, 1725–1729 (2014)

    Article  Google Scholar 

  9. Eerenstein, W., Mathur, N.D., Scott, J.F.: Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  10. Slimani, Y., Sivakumar, R., Meena, S.S., et. al.: Ceram. Int. 48(10), 14640–14651 (2022)

  11. Slimani, Y., Selmi, A. , Hannachi, E., Almessiere, M.A., Mumtaz, M. , Baykal, A., Ercan, I.: J. Mater. Sci.: Mater. Electron. 30(14), 13509–13518 (2019)

  12. Slimani, Y., Unal, B., Almessiere, M.A., Hannachi, E., Yasin, G., Baykal, A., Ercan, I.: J. Mater. Sci.: Mater. Electron. 31(10), 7786–7797 (2020)

    Google Scholar 

  13. Mhareb, M.H.A., Slimani, Y., Alajerami, Y.S., et al.: Ceram. Int. 46(18), 28877–28886 (2020)

    Article  Google Scholar 

  14. Slimani, Y., Selmi, A., Hannachi., E., Almessiere, M. A., et al.: J. Phys. Chem. Solids, 156, 110183 (2021)

  15. Alotaibi, S.A., Slimani, Y., Hannachi, E., et al.: Ceram. Int. 47(24), 34260–34268 (2021)

    Article  Google Scholar 

  16. Alotaibi, S.A., Slimani, Y., Almessiere, M.A., et al.: The European Physical Journal Plus 137, 46 (2022)

    Article  ADS  Google Scholar 

  17. Slimani, Y., Hannachi, E., Ben Salem, M.K., et al.: J. Supercond. Novel Magn. 28, 3001–3010 (2015)

    Article  Google Scholar 

  18. Hannachi, E., Almessiere, M. A., Slimani, Y., Baykal. A., Ben, F.: J. Alloys Compd. 812, 152150 (2020)

  19. Candan, A., Akbudak, S., Uğur, G.: J. Alloy. Compd. 43, 664–673 (2019)

    Article  Google Scholar 

  20. Yasin, G., Anjum, M.J., Malik, M.U., Khan, M.A., et al.: Diam. Relat. Mater. 104, 107763 (2020)

    Article  ADS  Google Scholar 

  21. Pasuk, I., Neatu, F., Neat, S., Florea, M., Istrate, C.M., Pintilie, I., Pintilie, L.: Nanomaterials 11, 1121 (2021)

    Article  Google Scholar 

  22. Saleem, M., Tiwari, S., Mishra, A.: J. Supercond. Nov. Magn. 33, 2787(2020)

  23. Saleem, M., Varshney, D.: RSC Adv. 8, 1600 (2018)

    Article  ADS  Google Scholar 

  24. Makhdoom, A.R., Akhtar, M.J., Rafiq, M.A., Hassan, M.: Ceram. Int. 38, 3829 (2012)

    Article  Google Scholar 

  25. Das, S.N., Pattanaik, A., Kadambini, S., Pradhan, S., Bhuyan, S., Choudhary, R.N.P.: J Mater Sci: Mater Electron 27, 10 (2016)

    Google Scholar 

  26. Dagar, S., Hooda, A., Khasa, S., Malik, M.: J. Alloys Compd. 826, 154214 (2020)

  27. Cai, W., Fu, C., Hu, W., Chen, G., Deng, X.: J. Alloys Compd. 554, 64 (2013)

    Article  Google Scholar 

  28. Wagner, K.W.: Ann. Phys. 345, 817 (1913)

    Article  Google Scholar 

  29. Koops, C.G.: Phys. Rev 83, 121 (1951)

    Article  ADS  Google Scholar 

  30. Pradhan, S.K., Das, S.N., Bhuyan, S., Behera, C., Choudhary, R.N.P.: J Mater Sci: Mater Electron 28, 1186 (2017)

    Google Scholar 

  31. Adhlakha, N., Yadav, K.L., Singh, R.: Smart Mater. Struct. 23, 105024 (2014)

    Article  ADS  Google Scholar 

  32. Thansanga, L., Shukla, A., Kumar, N., Choudhary, R.N.P.: J. Mater. Sci.: Mater. Electron 31, 7 (2020)

    Google Scholar 

  33. Saleem, M., Varshney, D.: J. Alloys Compd. 708, 397 (2017)

    Article  Google Scholar 

  34. Saleem, M., Mishra, A., Varshney, D.: J. Supercond. Nov. Magn. 32, 1475–1487 (2019)

    Article  Google Scholar 

  35. Williams, G., Watts, D.C.: Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  36. Dadami, S.T., Matteppanavar, S., Shivaraja, I., Rayaprol, S., Deshpande, S.K., Murugendrappa, M.V., Angadi, B.: Ceram. Int. 43, 16684–16692 (2017)

    Article  Google Scholar 

  37. Das, P.R., Parida, B.N., Padhee, R., Choudhary, R.N.P.: J. Adv. Ceram. 2, 112–118 (2013)

    Article  Google Scholar 

  38. Nagarajaa, T., Matteppanavarb, S., Shivarajaa, I., Rayaprolc, S., Angadi, B.: J. AlloysCompd. 869, 159312 (2021)

    Google Scholar 

  39. Rayssi, Ch., Kossi, S. El., Dhahri, J., Khirouni, K.: RSC Adv. 8, 17139 (2018)

  40. Barik, S.K., Choudhary, R.N.P., Singh, K.: Adv. Mater. Lett. 2, 419–424 (2011)

    Article  Google Scholar 

  41. Karma, N., Saleem, M., Kaurav, N., Dager, H.S.: Int. J. Mod. Phys. B 35, 2150312 (2021)

    Article  ADS  Google Scholar 

  42. Cao, W., Gerhardt, R.: Solid State Ion 42, 213 (1990)

    Article  Google Scholar 

  43. Gerhardt, R.: J. Phys. Chem. Solids, 55, 1491 (1994)

  44. Shivaraja, I., Matteppanavar, S., Deshpande, S.K., Rayaprol, S., Angadi, B.: J. Alloys Compd. 800, 334 (2019)

  45. Batoo, K.M., Verma, R., Chauhan, A., Kumar, R., Hadi, M., Aldossary, O.M., Al-Douri, Y.: J. Alloys Compd. 883, 160836 (2021)

  46. Hosseini, S., Ranjbar, K., Dehmolaei, R., Amirani, A.: J. Alloys Compd. 622, 725 (2015)

    Article  Google Scholar 

  47. Gowtham, B., Balasubramani, V., Ramanathan, S., Ubaidullah, M., Shaikh, S.F., Sreedevi, G.: J. Alloys Compd. 888, 161490 (2021)

  48. Sasikala, C., Suresh, G., Durairaj, N., Baskaran, I., Sathyaseelan, B., Kumar, M., Senthilnathan, K., Manikandan, E.: J. Alloys Compd. 845, 155040 (2020)

    Article  Google Scholar 

  49. Sondarva, S.J., Shah, D.V.: J. Alloys Compd. 859, 157773 (2021)

    Article  Google Scholar 

  50. Yang, J., He, J., Zhu, J.Y., Bai, W., Sun, L., Meng, X.J., Tang, X.D., Duan, C.G., Remiens, D., Qiu, J.H., Chu, J.H.: Appl. Phys. Lett. 101, 222904 (2012)

    Article  ADS  Google Scholar 

  51. Halder, S., Parida, K., Das, S.N., Pradhan, S.K., Bhuyan, S., Choudhary, R.N.P.: Phys. Lett. A 382, 716 (2018)

    Article  ADS  Google Scholar 

  52. Wang, N., Luo, X., Han, L., Zhang, Z., Zhang, R., Olin, H., Yang, Y.: Nano-Micro Lett. 12, 81 (2020)

    Article  ADS  Google Scholar 

  53. Kumar, N., Shukla, A., Kumar, N., Choudhary, R.N.P., Kumar, A.: RSC Adv. 8, 36939 (2018)

    Article  ADS  Google Scholar 

  54. Zhang, C., Zhou, Z., Tang, Z., Ballo, D., Wang, C., Jian, G.: J. Alloys Compd. 889, 161622 (2021)

    Article  Google Scholar 

  55. Cai, W., Fu, C., Gao, R., Jiang, W., Deng, X., Chen, G.: J. Alloys Compd. 617, 240–246 (2014)

    Article  Google Scholar 

  56. Qi, X., Zhang, M., Zhang, X., Gu, Y., Zhu, H., Yanga, W., Lia, Y.: RSC Adv. 7, 51801 (2017)

    Article  ADS  Google Scholar 

  57. Hajra, P., Pal, M., Datta, A., Chakravorty, D., Meriakri, V., Parkhomenko, M.: J. Appl. Phys. 108, 114306 (2010)

  58. Mohan, S., Subramanian, B.: RSC Adv. 3, 23737 (2013)

    Article  ADS  Google Scholar 

  59. Mohan, S., Subramanian, B., Bhaumik, I., Guptab, P.K., Jaisankar, S.N.: RSC Adv. 4, 16871 (2014)

    Article  ADS  Google Scholar 

  60. Yao, Q., Xu, X., He, Y., Mao, W., Li, X.: J. Supercond. Nov. Magn. 32, 1001(2019)

Download references

Acknowledgements

The authors would like to acknowledge Dr. Rajeev Rawat for dielectric measurements and Dr. V. Reddy for P-E loop characterization facilities from UGC-DAE-CSR-Indore (M.P.), India. Further, Dr. Basharat Want, VSM Lab, Department of Physics, University of Kashmir, is acknowledged for M-H loop characterization. In addition to authors, Netram Kaurav acknowledges the partial funding from MPCST, Bhopal (M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Karma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karma, N., Saleem, M., Kaurav, N. et al. A Study of Structural, Electrical, and Magnetic Properties of (1-x) Bi0.9La0.05Sr0.05FeO3 – (x) BaTi0.8Zr0.2O3 [x = 0.05, 0.1, and 0.15] Composite Systems. J Supercond Nov Magn 35, 3635–3646 (2022). https://doi.org/10.1007/s10948-022-06413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06413-3

Keywords

Navigation