Skip to main content
Log in

Research on Bitter-like HTS Magnet Energized by Flux Pump with Single Thermal Switch

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

High-temperature superconducting (HTS) tapes are gradually developed in superconducting magnets with a high magnetic field with commercialization of 2G HTS tapes in recent years. However, persistent current mode (PCM) is a challenge to realize in HTS magnets because of the poor soldering technique. Bitter-like HTS magnet is a kind of magnet promising to overcome such drawbacks, which consists of REBCO plates and magnetized by flux pump or field cooling (FC). A Bitter-like HTS magnet is designed and manufactured by rectangle HTS plates excited by flux pump with single thermal switch. An experiment is performed at 77 K to validate its excitation properties. Meanwhile, theoretical analysis is presented to account for the electromagnetic properties and verified by simulation results. As a typical experimental phenomenon, flux-flow resistance is utilized to describe the property of current relaxation, which is part of the experimental results in this paper. Results show a Bitter-like HTS magnet composed of rectangle plates can achieve the PCM operation with flux pump and single thermal switch, which avoids the soldering bottleneck in comparison with the conventional HTS magnets. At the same time, flux-flow resistance has a particular influence on the distribution of the magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iwasa, Y., Bascunan, J., Hahn, S., Tomita, M., Yao, W.: High-temperature superconducting magnets for NMR and MRI: R&D activities at the MIT Francis Bitter Magnet Laboratory. IEEE Trans. Appl. Supercond. 20(3), 718–721 (2010). https://doi.org/10.1109/TASC.2010.2040073

    Article  ADS  Google Scholar 

  2. Hahn, S., Kim, S. B., Ahn, M. C., Voccio, J., Bascunan, J., Wasa, Y.: A stack of YBCO annuli, thin plate and bulk, for micro-NMR spectroscopy. IEEE Trans. Appl. Supercond. 22(3), 4302204 (2012). https://doi.org/10.1109/TASC.2021.3052825

  3. Nam, S., Lee, W. S., Lee, J., Jeon, H., Han, S., Choi, Y., et al.: A study on the YBCO-coated conductor current lead with asymmetric structure tape considering temperature distribution. IEEE Trans. Appl. Supercond. 27(4), 4803105 (2017). https://doi.org/10.1109/TASC.2017.2663759

  4. Paasi, J., Lahtinen, M.: Computational comparison of AC losses in different kinds of HTS composite conductors. IEEE Trans. Appl. Supercond. 7(2), 322–325 (1997). https://doi.org/10.1109/77.614495

    Article  ADS  Google Scholar 

  5. Hu, Y., Wang, Y. S., Yuan, X., Chen, H., Liu, M., Wang, M., et al.: Incremental field accumulation in a Bitter-like HTS magnet from pulsed magnetization using outer and inner excitation coils. IEEE Trans. Appl. Supercond. 29(2), 4900505 (2019). https://doi.org/10.1109/TASC.2019.2891671

  6. Brittles, G.D., Mousavi, T., Grovenor, C.R.M., Aksoy, C., Speller, S.C.: Persistent current joints between technological superconductors. Supercond. Sci. Technol. 28,(9), 093001 (2015). https://doi.org/10.1088/0953-2048/28/9/093001

  7. Brittles, G.D., Aksoy, C., Grovenor, C.R.M., Bradshaw, T., Milward, S., Speller, S.: Microstructural properties and magnetic testing of spot-welded joints between Nb-Ti filaments. IEEE Trans. Appl. Supercond. 26(3), 8800304 (2016). https://doi.org/10.1109/TASC.2016.2529290

  8. Xi, Y., Wang, Y. S., Hou, Y. B., Kan, C. T., Sun, M.: Conceptual design of a Bitter-like superconducting magnet stacked by REBCO annular plates and magnetized by flux pump. IEEE Trans. Appl. Supercond. 28(3), 4603005 (2018). https://doi.org/10.1109/TASC.2018.2791937

  9. Zhu, L.F., Wang, Y., Liu, W., Liu, Y.T., Pi, W.: Conceptual design of HTS Bitter magnet above 25 T using a fast magnetic field computational method. IEEE Trans. Appl. Supercond. 31(5), 4601806 (2021). https://doi.org/10.1109/TASC.2021.3068370

  10. Miller, J.R., Miller, G.E., Kenney, S.J., Richardson, D.E., Windham, C.L.: Design and development of a pair of 10 kA HTS current leads for the NHMFL 45 hybrid magnet system. IEEE Trans. Appl. Supercond. 15(2), 1492–1495 (2005). https://doi.org/10.1109/tasc.2005.849140

    Article  ADS  Google Scholar 

  11. Lacy, J.H., Cridland, A., Pinder, J., Uribe, A., Willetts, R., Verdu, J.: Superconducting flux pump for a planar magnetic field source. IEEE Trans. Appl. Supercond. 30(8), 4902412 (2020). https://doi.org/10.1109/TASC.2018.2791937

  12. Zhang, H., Geng, J. Z., Shen, B. Y., Fu, L., Zhang, X., Li, C., et al.: Magnetization of coated conductor stacks using flux pumping. IEEE Trans. Appl. Supercond. 27(4), 8200205 (2017). https://doi.org/10.1109/TASC.2017.2652544

  13. Zhang, H., Geng, J.Z., Coombs, T.A.: Magnetizing high-Tc superconducting coated conductor stacks using a transformer-rectifier flux pumping method. Supercond. Sci. Technol. 31, 105007 (2018). https://doi.org/10.1088/1361-6668/aad78a

  14. Wang, J.W., Wang, Y.S., Qiao, Y.K., Wang, Y.Y., Pi, W.: Analyses on critical current density and magnetic fields of a REBCO annular plate excited by flux pump with thermal switch. IEEE Trans. Appl. Supercond. 31(8), 9501005 (2021). https://doi.org/10.1109/TASC.2021.3096482

  15. Cruz, V.S.D., Telles, G.T., Santos, B.M.O., Ferreira, A.C., Junior, R.D.A.: Study of the voltage behavior of jointless superconducting 2G loops during pulse magnetization. IEEE Trans. Appl. Supercond. 30,(5), 8200306 (2020). https://doi.org/10.1109/TASC.2020.2968919

  16. Grimaldi, G., Leo, A., Cirillo, C., Casaburi, A., Cristiano, R., Attanasio, C., et al.: Non-linear flux flow resistance of type-ii superconducting films. J. Supercond. Nov. Magn. 24, 81–87 (2011). https://doi.org/10.1007/s10948-010-0902-x

    Article  Google Scholar 

  17. Sirois, F., Grilli, F., Morandi, A.: Comparison of constitutive laws for modeling high-temperature superconductors. IEEE Trans. Appl. Supercond. 29(1), 8000110 (2018). https://doi.org/10.1109/TASC.2018.2848219

  18. Pi, W., Liu, Z., Li, G., Ma, S., Meng, Y., Shi, Q., et. al.: 4D simulation of quench behavior in quasi-isotropic superconducting cable of stacked REBCO tapes considering thermal contact resistance. Supercond. Sci. Technol. 33(8), 084005 (2020). https://doi.org/10.1088/1361-6668/ab9aa3

  19. Gomory, F., Vojenciak, M., Pardo, E., Solovyov, M., Souc, J.: AC losses in coated conductors. Supercond. Sci. Technol. 23(3), 034012 (2010). https://doi.org/10.1088/0953-2048/23/3/034012

  20. Zhang, G.Y., Wang, Y.S., Wang, Y.Y., Chen, Y.H., Zhu, L.F.: Electro-thermo-mechanical properties of quasi-isotropic strand in thermal disturbance. Supercond. Sci. Technol. 34(8), 085010 (2021). https://doi.org/10.1088/1361-6668/ac0a8d

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant No. 51977078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinshun Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Y., Huang, Z. et al. Research on Bitter-like HTS Magnet Energized by Flux Pump with Single Thermal Switch. J Supercond Nov Magn 35, 3309–3316 (2022). https://doi.org/10.1007/s10948-022-06389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06389-0

Keywords

Navigation