Skip to main content
Log in

A Comparative Study of Superconductivity and Thermally Activated Flux Flow of YBa2Cu3O7-δ and YBa2Cu3O7-δ/La1-x-yPrxCayMnO3 Bilayers

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

YBa2Cu3O7-δ/La1-x-yPrxCayMnO3 (YBCO/LPCMO) (x ~ 0.31, y ~ 0.35) bilayers with fixed ferromagnetic layer thickness dFM ~ 126 nm and superconducting layer thicknesses of dSC ~ 80 nm and 160 nm have been grown by a combination of RF magnetron sputtering and pulsed laser deposition on SrTiO3 (001) substrates. If dSC < dFM) the bilayer (i) shows a sharp decline in the superconducting transition temperature (Tc), (ii) has smaller activation energy (U0) for thermally activated flux flow (TAFF), (iii) possesses a smaller upper critical field (Hc2) and (iv) shows reduced irreversibility field (Hirr). When dSC > dFM, the bilayers exhibit a larger U0, and higher Hc2, with an irreversibility line above the pure YBCO in the higher temperature and lower field regimes. The analysis of the magnetic field–dependent activation energy in terms of \({U}_{0}\sim {H}^{-\alpha }\) and \({U}_{0}=A-Bln\; H\) supports the presence of two-dimensional (2D) vortex structure in pure YBCO and bilayer with dSC < dFM. The bilayer with dSC > dFM shows abnormal behavior. The analysis of the Hirr (T) data in terms of the power relationship of the form, \({H}_{\mathrm{irr}}\left(T\right)={H}_{0}{\left[1-\frac{{T}_{\mathrm{irr}}(H)}{{T}_{c}}\right]}^{n}\) confirms an improved flux pinning in the thicker YBCO film and bilayer with dSC > dFM. The enhanced vortex pinning in this bilayer could be explained by the interfacial pinning caused by the FM domains. The interaction between superconductivity and ferromagnetism in the bilayers is also supported by magnetization measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meissner, H.: Superconductivity of contacts with interposed barriers. Phys. Rev. 117, 672–680 (1960). https://doi.org/10.1103/PhysRev.117.672

    Article  ADS  Google Scholar 

  2. Meissner, H.: Surface energy effects at the boundary between a superconductor and a normal conductor. IBM J. Res. & Dev. 6, 71–74 (1962). https://doi.org/10.1147/rd.61.0071

    Article  Google Scholar 

  3. Smith, P.H., Shapiro, S., Miles, J.L., Nicol, J.: Superconducting characteristics of superimposed metal films. Phys. Rev. Lett. 6, 686–688 (1961). https://doi.org/10.1103/PhysRevLett.6.686

    Article  ADS  Google Scholar 

  4. Rose-Innes, A.C., Serin, B.: Superconductivity of superimposed metals. Phys. Rev. Lett. 7, 278–279 (1961). https://doi.org/10.1103/PhysRevLett.7.278

    Article  ADS  Google Scholar 

  5. Kleiner, R., Buckel, W.: Superconductivity an introduction. Wiley-VCH Verlag GmbH & Co. KGaA, Germany (2016)

    Google Scholar 

  6. Simmons, W.A., Douglass, D.H.: Superconducting transition temperature of superimposed films of tin and silver. Phys. Rev. Lett. 9, 153–155 (1962). https://doi.org/10.1103/PhysRevLett.9.153

    Article  ADS  Google Scholar 

  7. Hilsch, P.: Zum Verhalten von Supraleitern im Kontakt mit Normalleitern. Z. Physik. 167, 511–524 (1962). https://doi.org/10.1007/BF01378178

    Article  ADS  Google Scholar 

  8. Werthamer, N.R.: Theory of the superconducting transition temperature and energy gap function of superposed metal films. Phys. Rev. 132, 2440–2445 (1963). https://doi.org/10.1103/PhysRev.132.2440

    Article  ADS  Google Scholar 

  9. Izyumov, Y.A., Proshin, Y.N., Khusainov, M.G.: Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures. Phys. Usp. 45, 109–148 (2002). https://doi.org/10.1070/PU2002v045n02ABEH001025

    Article  ADS  Google Scholar 

  10. Radović, Z., Ledvij, M., Dobrosavljević-Grujić, L., Buzdin, A.I., Clem, J.R.: Transition temperatures of superconductor-ferromagnet superlattices. Phys. Rev. B. 44, 759–764 (1991). https://doi.org/10.1103/PhysRevB.44.759

    Article  ADS  Google Scholar 

  11. Demler, E.A., Arnold, G.B., Beasley, M.R.: Superconducting proximity effects in magnetic metals. Phys. Rev. B. 55, 15174–15182 (1997). https://doi.org/10.1103/PhysRevB.55.15174

    Article  ADS  Google Scholar 

  12. Tagirov, L.R.: Proximity effect and superconducting transition temperature in superconductor/ferromagnet sandwiches. Physica C. 307, 145–163 (1998). https://doi.org/10.1016/S0921-4534(98)00389-X

    Article  ADS  Google Scholar 

  13. Baladié, I., Buzdin, A.: Thermodynamic properties of ferromagnet/superconductor/ferromagnet nanostructures. Phys. Rev. B. 67, 014523 (2003). https://doi.org/10.1103/PhysRevB.67.014523

    Article  ADS  Google Scholar 

  14. Anderson, P.W., Suhl, H.: Spin alignment in the superconducting state. Phys. Rev. 116, 898–900 (1959). https://doi.org/10.1103/PhysRev.116.898

    Article  ADS  Google Scholar 

  15. Buzdin, A.I., Bulaevskii, L.N.: Ferromagnetic film on the surface of a superconductor: possible onset of inhomogeneous magnetic ordering. Sov. Phys. JETP/ZhETF. 94, 256B (1988)

  16. Bergeret, F.S., Efetov, K.B., Larkin, A.I.: Nonhomogeneous magnetic order in superconductor-ferromagnet multilayers. Phys. Rev. B. 62, 11872–11878 (2000). https://doi.org/10.1103/PhysRevB.62.11872

    Article  ADS  Google Scholar 

  17. Bergeret, F.S., Volkov, A.F., Efetov, K.B.: Induced ferromagnetism due to superconductivity in superconductor-ferromagnet structures. Phys. Rev. B. 69, 174504 (2004). https://doi.org/10.1103/PhysRevB.69.174504

    Article  ADS  Google Scholar 

  18. Ngai, J.H., Walker, F.J., Ahn, C.H.: Correlated oxide physics and electronics. Annu. Rev. Mater. Res. 44, 1–17 (2014). https://doi.org/10.1146/annurev-matsci-070813-113248

    Article  ADS  Google Scholar 

  19. Habermeier, H.-U., Cristiani, G., Kremer, R.K., Lebedev, O., van Tendeloo, G.: Cuprate/manganite superlattices. Physica C: Superconductivity and its applications. 364–365, 298–304 (2001). https://doi.org/10.1016/S0921-4534(01)00775-4

    Article  ADS  Google Scholar 

  20. Maple, M.B.: Three decades of progress on superconductivity and magnetism in novel materials. Physica C. 341–348, 47–52 (2000). https://doi.org/10.1016/S0921-4534(01)80002-2

    Article  ADS  Google Scholar 

  21. Buzdin, A.I.: Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005). https://doi.org/10.1103/RevModPhys.77.935

    Article  ADS  Google Scholar 

  22. Eschrig, M.: Spin-polarized supercurrents for spintronics: a review of current progress. Rep. Prog. Phys. 78, 104501 (2015). https://doi.org/10.1088/0034-4885/78/10/104501

    Article  ADS  Google Scholar 

  23. Pugach, N.G., Buzdin, A.I.: Magnetic moment manipulation by triplet Josephson current. Appl. Phys. Lett. 101, 242602 (2012). https://doi.org/10.1063/1.4769900

    Article  ADS  Google Scholar 

  24. de Andrés Prada, R., Golod, T., Kapran, O.M., Borodianskyi, E.A., Bernhard, C.H., Krasnov, V.M.: Memory-functionality superconductor/ferromagnet/superconductor junctions based on the high-Tc cuprate superconductors YBa2Cu3O7−x and the colossal magnetoresistive manganite ferromagnets La2/3X1/3MnO3+δ(X = Ca , Sr ). Phys. Rev. B. 99, 214510 (2019). https://doi.org/10.1103/PhysRevB.99.214510

  25. Stellhorn, A., Sarkar, A., Kentzinger, E., Barthel, J., Bernardo, A.D., Nandi, S., Zakalek, P., Schubert, J., Brückel, T.: Tailoring superconducting states in superconductor-ferromagnet hybrids. New J. Phys. 22, 093001 (2020). https://doi.org/10.1088/1367-2630/abaa02

    Article  ADS  Google Scholar 

  26. Prieto, P., Vivas, P., Campillo, G., Baca, E., Castro, L.F., Varela, M., Ballesteros, C., Villegas, J.E., Arias, D., León, C., Santamarı́a, J.: Magnetism and superconductivity in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices. J. Appl. Phys. 89, 8026–8029 (2001). https://doi.org/10.1063/1.1370994

  27. Sefrioui, Z., Arias, D., Peña, V., Villegas, J.E., Varela, M., Prieto, P., León, C., Martinez, J.L., Santamaria, J.: Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3/YBa2Cu 3O7−δ superlattices. Phys. Rev. B. 67, 214511 (2003). https://doi.org/10.1103/PhysRevB.67.214511

  28. Peña, V., Sefrioui, Z., Arias, D., Leon, C., Santamaria, J., Varela, M., Pennycook, S.J., Martinez, J.L.: Coupling of superconductors through a half-metallic ferromagnet: evidence for a long-range proximity effect. Phys. Rev. B. 69, 224502 (2004). https://doi.org/10.1103/PhysRevB.69.224502

    Article  ADS  Google Scholar 

  29. Soltan, S., Albrecht, J., Habermeier, H.-U.: Ferromagnetic/superconducting bilayer structure: a model system for spin diffusion length estimation. Phys. Rev. B. 70, 144517 (2004). https://doi.org/10.1103/PhysRevB.70.144517

    Article  ADS  Google Scholar 

  30. Haberkorn, N., Guimpel, J., Sirena, M., Steren, L.B., Saldarriaga, W., Baca, E., Gómez, M.E.: Antiferromagnetism at the YBa2Cu3O7/La2/3Ca1/3MnO3 interface. Appl. Phys. Lett. 84, 3927–3929 (2004). https://doi.org/10.1063/1.1741038

    Article  ADS  Google Scholar 

  31. Samal, D., Anil Kumar, P.S.: Influence of the ferromagnetic layer on the pair breaking and low alternating current field magnetic response in superconductor/ferromagnet bilayer. J. Appl. Phys. 109, 07E129 (2011). https://doi.org/10.1063/1.3560029

    Article  Google Scholar 

  32. Zhang, H., Gauquelin, N., Botton, G.A., Wei, J.Y.T.: Attenuation of superconductivity in manganite/cuprate heterostructures by epitaxially-induced CuO intergrowths. Appl. Phys. Lett. 103, 052606 (2013). https://doi.org/10.1063/1.4813840

    Article  ADS  Google Scholar 

  33. Morán, O., Perez, F., Saldarriaga, W., Gross, K., Baca, E.: Magnetic anisotropic behavior in epitaxial La2∕3Ca1∕3MnO3∕YBa2Cu3O7−δ∕La2∕3Ca1∕3MnO3 and La2∕3Ca1∕3MnO3∕La1∕3Ca2∕3MnO3∕YBa2Cu3O7−δ trilayered structures. J. Appl. Phys. 103, 07F724 (2008). https://doi.org/10.1063/1.2837875

    Article  Google Scholar 

  34. Stahn, J., Chakhalian, J., Niedermayer, Ch., Hoppler, J., Gutberlet, T., Voigt, J., Treubel, F., Habermeier, H.-U., Cristiani, G., Keimer, B., Bernhard, C.: Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers. Phys. Rev. B. 71, 140509 (2005). https://doi.org/10.1103/PhysRevB.71.140509

    Article  ADS  Google Scholar 

  35. Paull, O.H.C., Pan, A.V., Causer, G.L., Fedoseev, S.A., Jones, A., Liu, X., Rosenfeld, A., Klose, F.: Field dependence of the ferromagnetic/superconducting proximity effect in a YBCO/STO/LCMO multilayer. Nanoscale. 10, 18995–19003 (2018). https://doi.org/10.1039/C8NR01210E

    Article  Google Scholar 

  36. Palstra, T.T.M., Batlogg, B., van Dover, R.B., Schneemeyer, L.F., Waszczak, J.V.: Dissipative flux motion in high-temperature superconductors. Phys. Rev. B. 41, 6621–6632 (1990). https://doi.org/10.1103/PhysRevB.41.6621

    Article  ADS  Google Scholar 

  37. Zhang, Y.Z., Wen, H.H., Wang, Z.: Thermally activated energies of YBa2Cu3O7−δ and Y0.8Ca 0.2Ba2Cu3O7−δ thin films. Phys. Rev. B. 74, 144521 (2006). https://doi.org/10.1103/PhysRevB.74.144521

  38. Sefrioui, Z., Arias, D., Varela, M., León, C., Santamarı́a, J.: Effect of anisotropy on the vortex liquid dissipation in YBa2Cu3O7−δ thin films. J. Alloys Compd. 323324, 572–575 (2001). https://doi.org/10.1016/S0925-8388(01)01179-3

  39. Kumar, R., Varma, G.D.: Study of TAFF and vortex phase of FexTe0.60Se0.40(0.970 ≤ x ≤ 1.030) single crystals. Phys. Scr. 95, 045814 (2020). https://doi.org/10.1088/1402-4896/ab71bf

  40. Liu, Y., Li, X.G.: Irreversibility line and thermally activated flux flow in La1.6−xNd0.4SrxCuO4 films. J. Appl. Phys. 99, 053903 (2006). https://doi.org/10.1063/1.2174120

  41. Dew-Hughes, D.: Model for flux creep in high Tc superconductors. Cryogenics. 28, 674–677 (1988). https://doi.org/10.1016/0011-2275(88)90152-X

    Article  ADS  Google Scholar 

  42. Figueras, J., Puig, T., Obradors, X.: Influence of twin boundaries and randomly oriented correlated disorder on the liquid vortex plasticity of YBa2Cu3O7. Phys. Rev. B. 67, 014503 (2003). https://doi.org/10.1103/PhysRevB.67.014503

    Article  ADS  Google Scholar 

  43. Xiaowen, C., Zhihe, W., Xiaojun, X.: Magnetoresistance and a crossover from activated to diffusive dissipation in the mixed state for YBa2Cu3O7−δ epitaxial thin films. Phys. Rev. B. 65, 064521 (2002). https://doi.org/10.1103/PhysRevB.65.064521

    Article  ADS  Google Scholar 

  44. Andersson, M., Rydh, A., Rapp, Ö.: Scaling of the vortex-liquid resistivity in optimally doped and oxygen-deficient YBa2Cu3O7−δ single crystals. Phys. Rev. B. 63, 184511 (2001). https://doi.org/10.1103/PhysRevB.63.184511

    Article  ADS  Google Scholar 

  45. Gordeev, S.N., Rassau, A.P., Langan, R.M., de Groot, P.A.J., Geshkenbein, V.B., Gagnon, R., Taillefer, L.: Resistivity of clean YBa2Cu3O7−δ in the pinned-liquid state. Phys. Rev. B. 60, 10477–10483 (1999). https://doi.org/10.1103/PhysRevB.60.10477

    Article  ADS  Google Scholar 

  46. Pu, M.H., Song, W.H., Zhao, B., Wu, X.C., Sun, Y.P., Du, J.J., Fang, J.: Enhanced flux pinning in (Bi, Pb)-2223/Ag tapes by slight Pr-doping. Physica C. 361, 181–188 (2001). https://doi.org/10.1016/S0921-4534(01)00408-7

    Article  ADS  Google Scholar 

  47. Yildirim, G., Akdogan, M., Altintas, S.P., Erdem, M., Terzioglu, C., Varilci, A.: Investigation of the magnetic field angle dependence of resistance, irreversibility field, upper critical field and critical current density in DC sputtered Bi-2223 thin film. Physica B. 406, 1853–1857 (2011). https://doi.org/10.1016/j.physb.2011.02.041

    Article  ADS  Google Scholar 

  48. Tinkham, M.: Introduction to Superconductors. McGraw Hill, New York (1996)

    Google Scholar 

  49. Qiu, X.G., Wuyts, B., Maenhoudt, M., Moshchalkov, V.V., Bruynseraede, Y.: Two different thermally activated flux-flow regimes in oxygen-deficient YBa2Cu3O7−x thin films. Phys. Rev. B. 52, 559–563 (1995). https://doi.org/10.1103/PhysRevB.52.559

    Article  ADS  Google Scholar 

  50. Kumar, M., Phase, D.M., Choudhary, R.J., Lee, H.H.: Structure and functionalities of manganite/cuprate thin film. Curr. Appl. Phys. 18, S33–S36 (2018). https://doi.org/10.1016/j.cap.2017.11.009

    Article  ADS  Google Scholar 

  51. Liu, S.L.: The activation energy U(T, H) in Y-based superconductors. J. Supercond. Nov. Magn. 21, 199–203 (2008). https://doi.org/10.1007/s10948-008-0318-z

    Article  Google Scholar 

  52. Sefrioui, Z., Arias, D., González, E.M., León, C., Santamaria, J., Vicent, J.L.: Vortex liquid entanglement in irradiated YBa2Cu3O7 thin films. Phys. Rev. B. 63, 064503 (2001). https://doi.org/10.1103/PhysRevB.63.064503

    Article  ADS  Google Scholar 

  53. Miu, L., Jakob, G., Haibach, P., Hillmer, F., Adrian, H., Almasan, C.C.: Vortex-liquid entanglement in Bi2Sr2CaCu2O8+δ films in the presence of quenched disorder. Phys. Rev. B. 57, 3151–3155 (1998). https://doi.org/10.1103/PhysRevB.57.3151

    Article  ADS  Google Scholar 

  54. Xiaojun, X., Lan, F., Liangbin, W., Yuheng, Z., Jun, F., Xiaowen, C., Kebin, L., Hisashi, S.: Dependence of activation energy upon magnetic field and temperature in YBa2Cu3O7−δ epitaxial thin film. Phys. Rev. B. 59, 608–612 (1999). https://doi.org/10.1103/PhysRevB.59.608

    Article  ADS  Google Scholar 

  55. Samal, D., Sow, C., Anil Kumar, P.S.: Observation of reduced activation energy and the possible existence of decoupled pancake vortices in superconductor/ferromagnet bilayers. J. Phys. Condens. Matter. 22, 295701 (2010). https://doi.org/10.1088/0953-8984/22/29/295701

  56. Salvato, M., Bobba, F., Calabrese, G., Cirillo, C., Cucolo, A.M., De Santis, A., Vecchione, A., Attanasio, C.: Activation energy in La0.7Ca0.3MnO3/YBa2Cu3O7-δ/La0.7Ca0.3MnO3 superconducting trilayers. Eur. Phys. J. B. 51, 79–85 (2006). https://doi.org/10.1140/epjb/e2006-00200-4

  57. Samal, D., Anil Kumar, P.S.: Evidence for decoupled two-dimensional vortex behavior of YBa2Cu3O7−δ in La0.7Sr0.3MnO3/YBa2Cu3O7−δ/La0.7Sr0.3MnO3 trilayer. J. Appl. Phys. 108, 123909 (2010). https://doi.org/10.1063/1.3524545

  58. Senapati, K., Budhani, R.C.: Clean-limit pair breaking and two-dimensional vortex dynamics in ferromagnet-superconductor heterostructures. Phys. Rev. B. 70, 174506 (2004). https://doi.org/10.1103/PhysRevB.70.174506

    Article  ADS  Google Scholar 

  59. Peña, V., Sefrioui, Z., Arias, D., León, C., Santamaria, J., Martinez, J.L.: Vortex decoupling in LCMO/YBCO superlattices. J. Phys. Chem. Solids. 67, 387–390 (2006). https://doi.org/10.1016/j.jpcs.2005.10.090

    Article  ADS  Google Scholar 

  60. Zhang, X.X., Wen, G.H., Zheng, R.K., Xiong, G.C., Lian, G.J.: Enhanced flux pinning in a high- T C superconducting film by a ferromagnetic buffer layer. Europhys. Lett. 56, 119–125 (2001). https://doi.org/10.1209/epl/i2001-00496-6

    Article  ADS  Google Scholar 

  61. Ravelosona, D., Contour, J.P., Bontemps, N.: Vortex-lattice activation energy deduced from irreversibility lines for ( PrBa2Cu3−xGaxO7)M/(YBa2Cu3O7) N superlattices. Phys. Rev. B. 61, 7044–7048 (2000). https://doi.org/10.1103/PhysRevB.61.7044

    Article  ADS  Google Scholar 

  62. Bulaevskii, L.N., Chudnovsky, E.M., Maley, M.P.: Magnetic pinning in superconductor-ferromagnet multilayers. Appl. Phys. Lett. 76, 2594–2596 (2000). https://doi.org/10.1063/1.126419

    Article  ADS  Google Scholar 

  63. Jan, D.B., Coulter, J.Y., Hawley, M.E., Bulaevskii, L.N., Maley, M.P., Jia, Q.X., Maranville, B.B., Hellman, F., Pan, X.Q.: Flux pinning enhancement in ferromagnetic and superconducting thin-film multilayers. Appl. Phys. Lett. 82, 778–780 (2003). https://doi.org/10.1063/1.1542674

    Article  ADS  Google Scholar 

  64. Habermeier, H.-U., Albrecht, J., Soltan, S.: The enhancement of flux-line pinning in all-oxide superconductor/ferromagnet heterostructures. Supercond. Sci. Technol. 17, S140–S144 (2004). https://doi.org/10.1088/0953-2048/17/5/010

    Article  Google Scholar 

  65. Singh, S., Sharma, G., Thakur, M.K., Siwach, P.K., Kumar Tyagi, P., Maurya, K.K., Singh, H.K.: Effect of phase separation induced supercooling on magnetotransport properties of epitaxial La5/8−yPryCa3/8MnO3 (y≈0.4) thin film. AIP Adv. 5, 027131 (2015). https://doi.org/10.1063/1.4913508

  66. Kumari, S., Siwach, P.K., Maurya, K.K., Awana, V.P.S., Singh, H.K.: Magnetotransport irreversibility in single crystalline La0.18Pr0.40Ca0.42MnO3 thin films. Phys. Status Solidi B. 256, 1800617 (2019). https://doi.org/10.1002/pssb.201800617

  67. Singh, S., Kumar, P., Siwach, P.K., Tyagi, P.K., Singh, H.K.: Supercooling transition in phase separated manganite thin films: an electrical transport study. Appl. Phys. Lett. 104, 212403 (2014). https://doi.org/10.1063/1.4880725

    Article  ADS  Google Scholar 

  68. Agarwal, V., Sharma, G., Siwach, P.K., Maurya, K.K., Awana, V.P.S., Singh, H.K.: Crossover from charge order to strain glass in phase separated manganite thin films: impact of thermal cycling and substrate induced strain. Solid State Commun. 202, 43–47 (2015). https://doi.org/10.1016/j.ssc.2014.10.018

    Article  ADS  Google Scholar 

  69. Agarwal, V., Kandpal, L.M., Siwach, P.K., Awana, V.P.S., Singh, H.K.: Multiple magnetic transitions, dynamical magnetic liquid and magnetic glass in La1−xPrCaMnO3 (x≈0.42, y≈0.40) thin films: a thickness dependent study. J. Magnet. Magnet. Mater. 394, 299–308 (2015). https://doi.org/10.1016/j.jmmm.2015.06.075

  70. Chaddah, P.: Studies on magnetic-field-induced first-order transitions. Pramana J. Phys. 67, 113–119 (2006). https://doi.org/10.1007/s12043-006-0042-9

    Article  ADS  Google Scholar 

  71. Kadowaki, K., Li, J.N., Franse, J.J.M.: Broadening phenomena of the resistive transition in single-crystalline YBa2Cu3O7 in magnetic fields. Physica C. 170, 298–306 (1990). https://doi.org/10.1016/0921-4534(90)90327-B

    Article  ADS  Google Scholar 

  72. Sahoo, B., Routray, K.L., Behera, D.: Magneto-electric field induced activation energy in LSMO imbedded YBCO superconductor. Physica C: Supercond. Its Appl. 562, 70–77 (2019). https://doi.org/10.1016/j.physc.2019.04.005

    Article  ADS  Google Scholar 

  73. Yeshurun, Y., Malozemoff, A.P.: Giant flux creep and irreversibility in an Y-Ba-Cu-O crystal: an alternative to the superconducting-glass model. Phys. Rev. Lett. 60, 2202–2205 (1988). https://doi.org/10.1103/PhysRevLett.60.2202

    Article  ADS  Google Scholar 

  74. Chrobak, M., Woch, W.M., Kowalik, M., Zalecki, R., Giebułtowski, M., Przewoźnik, J., Kapusta, Cz., Szwachta, G.: Magnetoresistance study of c-axis oriented YBCO thin film. Acta Phys. Pol. A. 131, 1018–1020 (2017). https://doi.org/10.12693/APhysPolA.131.1018

  75. Müller, K.A., Takashige, M., Bednorz, J.G.: Flux trapping and superconductive glass state in La2CuO4−y:Ba. Phys. Rev. Lett. 58, 1143–1146 (1987). https://doi.org/10.1103/PhysRevLett.58.1143

    Article  ADS  Google Scholar 

  76. Tinkham, M.: Resistive transition of high-temperature superconductors. Phys. Rev. Lett. 61, 1658–1661 (1988). https://doi.org/10.1103/PhysRevLett.61.1658

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Suman Kumari acknowledges the Department of Science and Technology (Government of India) for the award of the INSPIRE fellowship. The authors are also thankful to Dr. K.K. Maurya for the structural characterization.

Funding

The work was carried out on the facilities created during the 12th five-year plan project AQuaRIUS funded by CSIR. The authors acknowledge the support from IIT Roorkee through the SMILE-13 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Anas, M., Raghav, D.S. et al. A Comparative Study of Superconductivity and Thermally Activated Flux Flow of YBa2Cu3O7-δ and YBa2Cu3O7-δ/La1-x-yPrxCayMnO3 Bilayers. J Supercond Nov Magn 35, 3225–3240 (2022). https://doi.org/10.1007/s10948-022-06381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06381-8

Keywords

Navigation