Skip to main content
Log in

Physical Characterization, Optical Properties, and Magnetic Interactions of Cadmium-Doped Zinc Ferrite Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The physical characterization and magnetic interactions of cadmium-doped zinc ferrite nanoparticles \(\left({\mathrm{Zn}}_{1-x}{\mathrm{Cd}}_{x}{\mathrm{Fe}}_{2}{\mathrm{O}}_{4},x \le 10\%\right)\) have been studied. The samples were synthesized using the co-precipitation technique and analyzed for the structural phases, morphological, mechanical, optical, and magnetic properties using XRD, SEM, FTIR, DRS, PL, and VSM techniques. The spinel structure’s lattice parameters increased, and the size of the nanoparticles increased with the additional quantity of the dopant. SEM images revealed the existence of spherical particles with an average particle size of 36.32–39.57 nm. FTIR spectral analysis indicated the existence of absorption bands of metal oxide at higher and lower frequency regimes due to the stretching vibrations of both octahedral and tetrahedral sites. Diffuse reflectance spectral analysis (DRS) was used to measure the bandgap energies with the estimated values of 1.897, 2.012, 2.027, and 2.036 eV, which increased as the dopant concentration increased. The photoluminescence (PL) spectra for the emission wavelengths range from 485 to 478 nm with emission energies of 2.56–2.60 eV for the PL peaks. The magnetic properties were determined by employing a vibrating sample magnetometer (VSM) with an applied magnetic field up to 50 kOe at low and room temperatures (4 and 300 K). The magnetic hysteresis loops show a decrease in magnetic saturation from 36.458 to 6.682 emu/g, large coercivity and magneto-crystalline anisotropies at 4 K, and a decrease in magnetic moments and permeabilities with the doping of \({\mathrm{Cd}}^{2+}\) ions. Interionic and magnetic interactions were explained by the Yafet–Kittel (YK) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this work are available within the article.

References

  1. Zheng, M., Wu, X., Zou, B., Wang, Y.: Magnetic properties of nanosized MnFe2O4 particles. J. Magn. Magn. Mater. 183, 152–156 (1998)

    Article  ADS  Google Scholar 

  2. Prakash, T., Williams, G.V., Kennedy, J., Rubanov, S.: Formation of magnetic nanoparticles by low energy dual implantation of Ni and Fe into SiO2. J. Alloys Compd. 667, 255–261 (2016)

    Article  Google Scholar 

  3. Murmu, P., Kennedy, J., Ruck, B., Williams, G., Markwitz, A., Rubanov, S., Suvorova, A.: Effect of annealing on the structural, electrical and magnetic properties of Gd-implanted ZnO thin films. J. Mater. Sci. 47, 1119–1126 (2012)

    Article  ADS  Google Scholar 

  4. Prakash, T., Williams, G., Kennedy, J., Rubanov, S.: High spin-dependent tunneling magnetoresistance in magnetite powders made by arc-discharge. J. Appl. Phys. 120, 123905 (2016)

    Article  ADS  Google Scholar 

  5. Sankaranarayanan, V., Prakash, O., Pant, R., Islam, M.: Lithium ferrite nanoparticles for ferrofluid applications. J. Magn. Magn. Mater. 252, 7–9 (2002)

    Article  ADS  Google Scholar 

  6. Zhang, L., Cui, Z.: Electronic, magnetic, and optical performances of non-metals doped silicon carbide. Front. Chem. 10, 898174 (2022)

    Article  ADS  Google Scholar 

  7. Goldman, A.: Modern ferrite technology. Springer Sci. Bus. Media (2006)

  8. Valenzuela, R.: Magnetic ceramics Cambridge University Press Cambridge 10.1017. CBO9780511600296 (1994)

  9. Chen, D.-H., Chen, Y.-Y.: Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic acid. J. Colloid Interface Sci. 235, 9–14 (2001)

    Article  ADS  Google Scholar 

  10. Chen, N.-S., Yang, X.-J., Liu, E.-S., Huang, J.-L.: Reducing gas-sensing properties of ferrite compounds MFe2O4 (M= Cu, Zn, Cd and Mg). Sens. Actuators B Chem. 66, 178–180 (2000)

    Article  Google Scholar 

  11. Hema, E., Manikandan, A., Gayathri, M., Durka, M., Antony, S.A., Venkatraman, B.: The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. J. Nanosci. Nanotechnol. 16, 5929–5943 (2016)

    Article  Google Scholar 

  12. Kingsley, J., Suresh, K., Patil, K.: Combustion synthesis of fine-particle metal aluminates. J. Mater. Sci. 25, 1305–1312 (1990)

    Article  ADS  Google Scholar 

  13. Kharat, P.B., Somvanshi, S.B., Kounsalye, J.S., Deshmukh, S.S., Khirade, P.P., Jadhav, K.: Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. Presented at the (2018)

  14. López, J., González-Bahamón, L., Prado, J., Caicedo, J., Zambrano, G., Gómez, M., Esteve, J., Prieto, P.: Study of magnetic and structural properties of ferrofluids based on cobalt–zinc ferrite nanoparticles. J. Magn. Magn. Mater. 324, 394–402 (2012)

    Article  ADS  Google Scholar 

  15. Kumar, E.R., Reddy, P.S.P., Devi, G.S., Sathiyaraj, S.: Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M= Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)

    Article  ADS  Google Scholar 

  16. Carta, D., Casula, M.F., Falqui, A., Loche, D., Mountjoy, G., Sangregorio, C., Corrias, A.: A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M= Mn Co, Ni). J. Phys. Chem. C. 113, 8606–8615 (2009)

    Article  Google Scholar 

  17. Mahmood, A., Maqsood, A.: Physical properties, magnetic measurements, dielectric relaxation, and complex impedance studies of cobalt-doped zinc ferrite nanoparticles. Appl. Nanosci. 11, 2311–2336 (2021)

    Article  ADS  Google Scholar 

  18. Ahmad, R., Gul, I.H., Zarrar, M., Anwar, H., Khan Niazi, M.B., Khan, A.: Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application. J. Magn. Magn. Mater. 405, 28–35 (2016). https://doi.org/10.1016/j.jmmm.2015.12.019

    Article  ADS  Google Scholar 

  19. Phor, L., Kumar, V.: Structural, magnetic and dielectric properties of lanthanum substituted Mn0. 5Zn0. 5Fe2O4. Ceram. Int. 45, 22972–22980 (2019)

  20. Zhang, L., Cui, Z.: Theoretical study on electronic, magnetic and optical properties of non-metal atoms adsorbed onto germanium carbide. Nanomaterials 12, 1712 (2022)

    Article  Google Scholar 

  21. Phor, L., Chahal, S., Kumar, V.: Zn 2+ substituted superparamagnetic MgFe 2 O 4 spinel-ferrites: investigations on structural and spin-interactions. J. Adv. Ceram. 9, 576–587 (2020)

    Article  Google Scholar 

  22. Ghosh, A., Bhattacharya, S., Bhattacharya, D. P., Ghosh, A. Frequency dependent conductivity of cadmium vanadate glassy semiconductor. J. Phys. Cond. Matt. 20, 035203 (2008)

  23. Naik, P.P., Hasolkar, S.S., Keluskar, S., Pissurlekar, V.: Role of Mn+ 2 ions in monitoring structural, optical, magnetic and electrical properties of manganese zinc ferrite nanoparticles. J. Mater. Sci: Mater. Electron. 32, 25840–2585 (2021)

  24. Yadav, R.S., Kuřitka, I., Vilcakova, J., Urbánek, P., Machovsky, M., Masař, M., Holek, M.: Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Solids. 110, 87–99 (2017)

    Article  ADS  Google Scholar 

  25. Lima, E.S., Costa, L.S., Sampaio, G.R., Oliveira, E.S., Silva, E.B., Nascimento, H.O., Nascimento, R.F., Moura, K.O., Bastos-Neto, M., Loiola, A.R.: Zinc ferrite nanoparticles via coprecipitation modified method: glycerol as structure directing and stabilizing agent. J. Braz. Chem. Soc. 30, 882–891 (2019)

    Google Scholar 

  26. Cui, Z., Zhang, S., Wang, L., Yang, K.: Optoelectronic and magnetic properties of transition metals adsorbed Pd2Se3 monolayer. Micro Nanostructures. 167, 207260 (2022)

    Article  Google Scholar 

  27. Laokul, P., Amornkitbamrung, V., Seraphin, S., Maensiri, S.: Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Curr. Appl. Phys. 11, 101–108 (2011)

    Article  ADS  Google Scholar 

  28. Kombaiah, K., Vijaya, J.J., Kennedy, L.J., Bououdina, M., Kaviyarasu, K., Ramalingam, R.J., Munusamy, M.A., AlArfaj, A.: Effect of Cd2+ concentration on ZnFe2O4 nanoparticles on the structural, optical and magnetic properties. Optik 135, 190–199 (2017)

    Article  ADS  Google Scholar 

  29. Ammar, S., Jouini, N., Fiévet, F., Beji, Z., Smiri, L., Moliné, P., Danot, M., Grenèche, J.-M.: Magnetic properties of zinc ferrite nanoparticles synthesized by hydrolysis in a polyol medium. J. Phys. Condens. Matter. 18, 9055 (2006)

    Article  ADS  Google Scholar 

  30. Gómez-Polo, C., Recarte, V., Cervera, L., Beato-López, J.J., López-García, J., Rodríguez-Velamazán, J.A., Ugarte, M., Mendonça, E., Duque, J.: Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications. J. Magn. Magn. Mater. 465, 211–219 (2018)

    Article  ADS  Google Scholar 

  31. Rahimi, M., Eshraghi, M., Kameli, P.: Structural and magnetic characterizations of Cd substituted nickel ferrite nanoparticles. Ceram. Int. 40, 15569–15575 (2014)

    Article  Google Scholar 

  32. Lakhani, V., Pathak, T., Vasoya, N., Modi, K.: Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 13, 539–547 (2011)

    Article  ADS  Google Scholar 

  33. Deepty, M., Srinivas, C., Kumar, E.R., Mohan, N.K., Prajapat, C., Rao, T.C., Meena, S.S., Verma, A.K., Sastry, D.: XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceram. Int. 45, 8037–8044 (2019). https://doi.org/10.1016/j.ceramint.2019.01.029

    Article  Google Scholar 

  34. Gillot, B., Thiebaut, D., Laarj, M.: Synthesis of stoichiometric cadmium substituted magnetites and formation by oxidation of solid solutions of cadmium ferrite and γ-iron oxide. Thermochim. Acta. 342, 167–174 (1999)

    Article  Google Scholar 

  35. Kim, W., Hyun, S.W., Kouh, T., Kim, C.S., Hahn, E.J.: Local magnetic properties of spinel Cd0. 9M0. 1Fe2O4 (M= Zn, Ni) investigated by using external magnetic field M¡ § ossbauer spectrometry. J. Korean Phys. Soc. 59, 3380–3384 (2011)

  36. Holzwarth, U., Gibson, N.: The Scherrer equation versus the’Debye-Scherrer equation’. Nat. Nanotechnol. 6, 534–534 (2011)

    Article  ADS  Google Scholar 

  37. Satoh, T., Tsushima, T., Kudo, K.: A classification of normal spinel type compounds by “ionic packing factor.” Mater. Res. Bull. 9, 1297–1300 (1974)

    Article  Google Scholar 

  38. Groń, T.: Influence of vacancies and mixed valence on the transport processes in solid solutions with the spinel structure. Philos. Mag. B. 70, 121–132 (1994)

    Article  ADS  Google Scholar 

  39. Tatarchuk, T.R., Paliychuk, N.D., Bououdina, M., Al-Najar, B., Pacia, M., Macyk, W., Shyichuk, A.: Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 731, 1256–1266 (2018). https://doi.org/10.1016/j.jallcom.2017.10.103

    Article  Google Scholar 

  40. Pal, B., Dhara, S., Giri, P., Sarkar, D.: Evolution of room temperature ferromagnetism with increasing 1D growth in Ni-doped ZnO nanostructures. J. Alloys Compd. 647, 558–565 (2015)

    Article  Google Scholar 

  41. Pawar, R., Patange, S.M., Shitre, A., Gore, S., Jadhav, S., Shirsath, S.E.: Crystal chemistry and single-phase synthesis of Gd 3+ substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties. RSC Adv. 8, 25258–25267 (2018)

    Article  ADS  Google Scholar 

  42. Thakur, S., Rai, R., Bdikin, I., Rai, S.P.: Dielectric relaxation and ac conduction in multiferroic Bi0.8Gd0. 1Pb0.1Fe0.9Ti0.1O3 ceramics: impedance spectroscopy analysis. Phase Transitions. 89, 1213–1224 (2016)

  43. Yadav, R.S., Havlica, J., Masilko, J., Tkacz, J., Kuřitka, I., Vilcakova, J.: Anneal-tuned structural, dielectric and electrical properties of ZnFe 2 O 4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J. Mater. Sci. Mater. Electron. 27, 5992–6002 (2016)

    Article  Google Scholar 

  44. Kombaiah, K., Vijaya, J.J., Kennedy, L.J., Bououdina, M.: Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties. Ceram. Int. 42, 2741–2749 (2016)

    Article  Google Scholar 

  45. Zaki, H., Al-Heniti, S., Elmosalami, T.: Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J. Alloys Compd. 633, 104–114 (2015)

    Article  Google Scholar 

  46. Ladole, C.A.: Preparation and characterization of spinel zinc ferrite ZnFe2O4. Int J Chem Sci. 10, 1230–1234 (2012)

    Google Scholar 

  47. Younas, M., Atif, M., Nadeem, M., Siddique, M., Idrees, M., Grossinger, R.: Colossal resistivity with diminished tangent loss in Zn–Ni ferrite nanoparticles. J. Phys. Appl. Phys. 44, 345402 (2011)

    Article  Google Scholar 

  48. Modi, K., Rangolia, M., Chhantbar, M., Joshi, H.: Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites. J. Mater. Sci. 41, 7308–7318 (2006)

    Article  ADS  Google Scholar 

  49. Modi, K., Trivedi, U., Sharma, P., Lakhani, V., Chhantbar, M., Joshi, H.: Study of elastic properties of fine particle copper-zinc ferrites through infrared spectroscopy. (2006)

  50. Waldron, R.: Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955)

    Article  ADS  Google Scholar 

  51. Wang, Y., Zhou, C., Elquist, A.M., Ghods, A., Saravade, V.G., Lu, N., Ferguson, I.: A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications. Presented at the (2018)

  52. Jamal, E.M.A., D SAKTHI, K., Anantharaman, M.: On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bull. Mater. Sci. 34, 251–259 (2011)

  53. Sampath, S.K., Cordaro, J.F.: Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels. J. Am. Ceram. Soc. 81, 649–654 (1998)

    Article  Google Scholar 

  54. Tanbir, K., Ghosh, M.P., Singh, R.K., Kar, M., Mukherjee, S.: Effect of doping different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 31, 435–443 (2020)

    Article  Google Scholar 

  55. Naik, P.P., Hasolkar, S.S., Keluskar, S., Pissurlekar, V.: Role of Mn+ 2 ions in monitoring structural, optical, magnetic and electrical properties of manganese zinc ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 32, 25840–25851 (2021)

    Article  Google Scholar 

  56. Yu, S., Xiong, H.D., Eshun, K., Yuan, H., Li, Q.: Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain. Appl. Surf. Sci. 325, 27–32 (2015)

    Article  ADS  Google Scholar 

  57. Xu, L.-C., Song, X.-J., Yang, Z., Cao, L., Liu, R.-P., Li, X.-Y.: Phosphorene nanoribbons: passivation effect on bandgap and effective mass. Appl. Surf. Sci. 324, 640–644 (2015)

    Article  ADS  Google Scholar 

  58. Jefferson, P., Hatfield, S., Veal, T., King, P., McConville, C., Zúñiga-Pérez, J., Muñoz-Sanjosé, V.: Bandgap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92, 022101 (2008)

    Article  ADS  Google Scholar 

  59. Kalia, R., Chauhan, A., Verma, R., Sharma, M., Batoo, K.M., Kumar, R., Hussain, S., Ghotekar, S., Ijaz, M.F.: Photocatalytic degradation properties of Li-Cr ions substituted CoFe2O4 nanoparticles for wastewater treatment application. Phys. Status Solidi A. 219, 2100539 (2022)

    Article  ADS  Google Scholar 

  60. Lee, P.J., Saion, E., Al-Hada, N.M., Soltani, N.: A simple up-scalable thermal treatment method for synthesis of ZnO nanoparticles. Metals. 5, 2383–2392 (2015)

    Article  Google Scholar 

  61. Hochepied, J., Pileni, M.: Ferromagnetic resonance of nonstoichiometric zinc ferrite and cobalt-doped zinc ferrite nanoparticles. J. Magn. Magn. Mater. 231, 45–52 (2001)

    Article  ADS  Google Scholar 

  62. Hochepied, J., Pileni, M.: Magnetic properties of mixed cobalt–zinc ferrite nanoparticles. J. Appl. Phys. 87, 2472–2478 (2000)

    Article  ADS  Google Scholar 

  63. Anila, I., Mathew, M.J.: Study on the physico-chemical properties, magnetic phase resolution and cytotoxicity behavior of chitosan-coated cobalt ferrite nanocubes. Appl. Surf. Sci. 556, 149791 (2021)

    Article  Google Scholar 

  64. Mallesh, S., Srinivas, V.: A comprehensive study on thermal stability and magnetic properties of MnZn-ferrite nanoparticles. J. Magn. Magn. Mater. 475, 290–303 (2019)

    Article  ADS  Google Scholar 

  65. Cullity, B.: Introduction to magnetic materials. Addison Wesley Ser. Metallurgy Mater. (1972)

  66. Upadhyay, C., Verma, H., Anand, S.: Cation distribution in nanosized Ni–Zn ferrites. J. Appl. Phys. 95, 5746–5751 (2004)

    Article  ADS  Google Scholar 

  67. Sertkol, M.: Impact of Cd2+ substitution on the structural and magnetic peculiarities of MnZn nanospinel ferrites. J. Sol-Gel Sci. Technol. 1–7 (2022)

  68. Slimani, Y., Almessiere, M.A., Guner, S., Aktas, B., Shirsath, S.E., Silibin, M.V., Trukhanov, A.V., Baykal, A.: Impact of Sm3+ and Er3+ cations on the structural, optical, and magnetic traits of spinel cobalt ferrite nanoparticles: comparison investigation. ACS Omega. (2022)

  69. Stoner, E.C., Wohlfarth, E.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 240, 599–642 (1948)

    MATH  ADS  Google Scholar 

  70. Topkaya, R., Baykal, A., Demir, A.: Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J. Nanoparticle Res. 15, 1–18 (2013)

    Article  Google Scholar 

  71. Li, Q., Kartikowati, C.W., Horie, S., Ogi, T., Iwaki, T., Okuyama, K.: Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe 3 O 4 nanoparticles. Sci. Rep. 7, 1–7 (2017)

    Google Scholar 

  72. Amir, M., Gungunes, H., Slimani, Y., Tashkandi, N., El Sayed, H., Aldakheel, F., Sertkol, M., Sozeri, H., Manikandan, A., Ercan, I.: Mössbauer studies and magnetic properties of cubic CuFe 2 O 4 nanoparticles. J. Supercond. Nov. Magn. 32, 557–564 (2019)

    Article  Google Scholar 

  73. Kumar, V., Rana, A., Yadav, M., Pant, R.: Size-induced effect on nano-crystalline CoFe2O4. J. Magn. Magn. Mater. 320, 1729–1734 (2008)

    Article  ADS  Google Scholar 

  74. Angadi, V.J., Anupama, A., Kumar, R., Matteppanavar, S., Rudraswamy, B., Sahoo, B.: Observation of enhanced magnetic pinning in Sm3+ substituted nanocrystalline MnZn ferrites prepared by propellant chemistry route. J. Alloys Compd. 682, 263–274 (2016)

    Article  Google Scholar 

  75. Bugad, R., Bansode, P., Karche, B.: Influences of La3+ ion substitution on dielectric, susceptibility and permeability properties of Mg–Zn ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 32, 25711–25724 (2021)

    Article  Google Scholar 

  76. Globus, A., Guyot, M.: Wall displacement and bulging in magnetization mechanisms of the hysteresis loop. Phys. Status Solidi B. 52, 427–431 (1972)

    Article  ADS  Google Scholar 

  77. Kumar, A., Arora, M., Yadav, M., Panta, R.: Induced size effect on Ni doped nickel zinc ferrite nanoparticles. Phys. Procedia. 9, 20–23 (2010)

    Article  ADS  Google Scholar 

  78. Zipare, K., Bandgar, S., Shahane, G.: Effect of Dy-substitution on structural and magnetic properties of MnZn ferrite nanoparticles. J. Rare Earths. 36, 86–94 (2018)

    Article  Google Scholar 

  79. Mangalaraja, R., Ananthakumar, S., Manohar, P., Gnanam, F.: Magnetic, electrical and dielectric behaviour of Ni0. 8Zn0. 2Fe2O4 prepared through flash combustion technique. J. Magn. Magn. Mater. 253, 56–64 (2002)

  80. Alvarez, G., Montiel, H., Barron, J., Gutierrez, M., Zamorano, R.: Yafet–Kittel-type magnetic ordering in Ni0. 35Zn0. 65Fe2O4 ferrite detected by magnetosensitive microwave absorption measurements. J. Magn. Magn. Mater. 322, 348–352 (2010)

  81. Satalkar, M., Kane, S., Kulriya, P., Avasthi, D.: Swift heavy ion irradiated spinel ferrite: a cheap radiation resistant material. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 379, 235–241 (2016)

  82. Avazpour, L., Shokrollahi, H., Toroghinejad, M., Khajeh, M.Z.: Effect of rare earth substitution on magnetic and structural properties of Co1− xREx Fe2O4 (RE: Nd, Eu) nanoparticles prepared via EDTA/EG assisted sol–gel synthesis. J. Alloys Compd. 662, 441–447 (2016)

    Article  Google Scholar 

  83. Yafet, Y., Kittel, C.: Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290 (1952)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Pakistan Academy of Sciences (PAS). Dr. M. Nawaz Khan is acknowledged for technical discussion and help in computer programming. Syed Ikram Naqvi is acknowledged for checking references and critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghari Maqsood.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, A., Maqsood, A. Physical Characterization, Optical Properties, and Magnetic Interactions of Cadmium-Doped Zinc Ferrite Nanoparticles. J Supercond Nov Magn 35, 3379–3395 (2022). https://doi.org/10.1007/s10948-022-06367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06367-6

Keywords

Navigation