Skip to main content
Log in

From the Mott Insulator {La}{Pr}CuO\(_4\) to the Quantum Metal {La}{V}CuO\(_4\)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

High critical temperature cuprate superconducting materials are composed of copper oxide layers and interlayer charge reservoirs. When not doped, these cuprates behave as antiferromagnetic Mott insulators. We propose to design new materials by combining alternating layers of parents of hole-doped and electron-doped cuprates and modifications thereof. The idea behind this combination is to frustrate antiferromagnetism near half-filing. Our goal is to find an undoped cuprate that can be a quantum metal, which means a metal characterized by long-range antiferromagnetic order or only strong antiferromagnetic correlations, i.e., it could thus be a stable ground state against other perturbations. However, the new metallic states sought here could be precursors to new superconducting states in the absence or presence of doping. Using the density functional theory, we report on two hypothetical compounds, \(\lbrace\)La\(\rbrace \lbrace\)Pr\(\rbrace\)CuO\(_{4}\) and \(\lbrace\)La\(\rbrace \lbrace\)V\(\rbrace\)CuO\(_{4}\), that illustrate the different physics described above. The curly brackets mean that the preparation of these compounds shall be done by depositing a layer containing Pr, then one CuO\(_{2}\) layer, then finally the La layer in \(\lbrace\)La\(\rbrace \lbrace\)Pr\(\rbrace\)CuO\(_{4}\) for example. We examined the configurations formed by the positions of the charge reservoir‘s atoms with respect to the CuO\(_{2}\) layer in the new procedure we propose here. This paper reports on the X-ray diffraction, electronic, optical, and magnetic properties of these hypothetical materials. We found that \(\lbrace\)La\(\rbrace \lbrace\)Pr\(\rbrace\)CuO\(_{4}\) is a Mott insulator, but \(\lbrace\)La\(\rbrace \lbrace\)V\(\rbrace\)CuO\(_{4}\) is an undoped correlated quantum metal with long-range antiferromagnetic order. These two compounds illustrate well the transition from a Mott insulator to a quantum metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Drozdov, A., Eremets, M., Troyan, I., Ksenofontov, V., Shylin, S.: Conventional superconductivity at 203 k at high pressures. Nature 525(7567), 73–76 (2015)

    Article  ADS  Google Scholar 

  2. Drozdov, A., Kong, P., Minkov, V., Besedin, S., Kuzovnikov, M., Mozaffari, S., Balicas, L., Balakirev, F., Graf, D., Prakapenka, V., et al.: Superconductivity at 250 k in lanthanum hydride under high pressures. Nature 569(7757), 528–531 (2019)

    Article  ADS  Google Scholar 

  3. Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P.: Unconventional superconductivity in magic-angle graphene superlattices. Nature 556(7699), 43–50 (2018)

    Article  ADS  Google Scholar 

  4. Yankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K., Taniguchi, T., Graf, D., Young, A.F., Dean, C.R.: Tuning superconductivity in twisted bilayer graphene. Science 363(6431), 1059–1064 (2019)

    Article  ADS  Google Scholar 

  5. Weller, T.E., Ellerby, M., Saxena, S.S., Smith, R.P., Skipper, N.T.: Superconductivity in the intercalated graphite compounds c 6 yb and c 6 ca. Nat. Phys. 1(1), 39–41 (2005)

    Article  Google Scholar 

  6. Dai, P., Chakoumakos, B., Sun, G., Wong, K., Xin, Y., Lu, D.: Synthesis and neutron powder diffraction study of the superconductor hgba2ca2cu3o8+ δ by tl substitution. Physica C: Superconductivity 243(3–4), 201–206 (1995)

    Article  ADS  Google Scholar 

  7. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108(5), 1175 (1957)

    Google Scholar 

  8. Azzouz, M.: Rotating antiferromagnetism in high-temperature superconductors. Phys. Rev. B 67(13), 134510 (2003)

    Article  ADS  Google Scholar 

  9. Azzouz, M.: Thermodynamics of high-t c materials in the rotating antiferromagnetism theory. Phys. Rev. B 68(17), 174523 (2003)

    Article  ADS  Google Scholar 

  10. Azzouz, M.: Chemical potentials of high-temperature superconductors. Phys. Rev. B 70(5), 052501 (2004)

    Article  ADS  Google Scholar 

  11. Azzouz, M.: Fermi surface reconstruction due to hidden rotating antiferromagnetism in n and p-type high-tc cuprates. Symmetry 5(2), 215–232 (2013)

    Article  MathSciNet  Google Scholar 

  12. Azzouz, M.: Theory of the magnetic resonance for the high-tc cuprate superconductors. Physica C: Superconductivity and its Applications 508, 36–41 (2015)

    Article  ADS  Google Scholar 

  13. Azzouz, M., Ramakko, B., Presenza-Pitman, G.: The electronic structure of the high-tc cuprates within the hidden rotating order. J. Phys. Condens. Matter 22(34), 345605 (2010)

    Article  Google Scholar 

  14. Saadaoui, H., Azzouz, M.: Doping dependence of coupling between charge carriers and bosonic modes in the normal state of high-t c superconductors. Phys. Rev. B 72(18), 184518 (2005)

    Article  ADS  Google Scholar 

  15. Blaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D., Luitz, J., et al.: wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties (2001)

  16. Madsen, G.K., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64(19), 195134 (2001)

    Article  ADS  Google Scholar 

  17. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Google Scholar 

  18. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  19. Perdew, J.P.: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33(12), 8822 (1986)

    Article  ADS  Google Scholar 

  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  21. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C., Sutton, A.: Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+ u study. Phys. Rev. B 57(3), 1505 (1998)

    Article  ADS  Google Scholar 

  22. Himmetoglu, B., Floris, A., De Gironcoli, S., Cococcioni, M.: Hubbard-corrected dft energy functionals: The lda+ u description of correlated systems. Int. J. Quantum Chem. 114(1), 14–49 (2014)

    Article  Google Scholar 

  23. Pesant, S., Côté, M.: Dft+ u study of magnetic order in doped la 2 cuo 4 crystals. Phys. Rev. B 84(8), 085104 (2011)

    Article  ADS  Google Scholar 

  24. Kolchina, L., Lyskov, N., Kuznetsov, A., Kazakov, S., Galin, M., Meledin, A., Abakumov, A., Bredikhin, S., Mazo, G., Antipov, E.: Evaluation of ce-doped pr 2 cuo 4 for potential application as a cathode material for solid oxide fuel cells. RSC Adv. 6(103), 101029–101037 (2016)

    Article  ADS  Google Scholar 

  25. Twagirayezu, F.J.: Density functional theory study of the effect of vanadium doping on electronic and optical properties of nio. International Journal of Computational Materials Science and Engineering 8(02), 1950007 (2019)

    Article  ADS  Google Scholar 

  26. Kokalj, A.: Xcrysden–a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Modell. 17(3–4), 176–179 (1999)

  27. Momma, K., Izumi, F.: Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011)

    Article  Google Scholar 

  28. Campi, G., Dell’Omo, C., Di Castro, D., Agrestini, S., Filippi, M., Bianconi, G., Barba, L., Cassetta, A., Colapietro, M., Saini, N., et al.: Effect of temperature and x-ray illumination on the oxygen ordering in la2cuo4. 1 superconductor. J Supercond 17(1), 137–142 (2004)

  29. Reehuis, M., Ulrich, C., Prokeš, K., Gozar, A., Blumberg, G., Komiya, S., Ando, Y., Pattison, P., Keimer, B.: Crystal structure and high-field magnetism of la 2 cu o 4. Phys. Rev. B 73(14), 144513 (2006)

    Article  ADS  Google Scholar 

  30. Czyżyk, M., Sawatzky, G.: Local-density functional and on-site correlations: the electronic structure of la 2 cuo 4 and lacuo 3. Phys. Rev. B 49(20), 14211 (1994)

    Article  ADS  Google Scholar 

  31. Jorgensen, J., Dabrowski, B., Pei, S., Hinks, D., Soderholm, L., Morosin, B., Schirber, J., Venturini, E., Ginley, D.: Superconducting phase of la 2 cu o 4+ δ: A superconducting composition resulting from phase separation. Phys. Rev. B 38(16), 11337 (1988)

    Article  ADS  Google Scholar 

  32. Furness, J.W., Zhang, Y., Lane, C., Buda, I.G., Barbiellini, B., Markiewicz, R.S., Bansil, A., Sun, J.: An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors. Commun. Phys. 1(1), 1–6 (2018)

    Article  Google Scholar 

  33. Santoso, I., Ku, W., Shirakawa, T., Neuber, G., Yin, X., Enoki, M., Fujita, M., Liang, R., Venkatesan, T., Sawatzky, G.A., et al.: Unraveling local spin polarization of zhang-rice singlet in lightly hole-doped cuprates using high-energy optical conductivity. Phys. Rev. B 95(16), 165108 (2017)

    Article  ADS  Google Scholar 

  34. Lane, C., Furness, J.W., Buda, I.G., Zhang, Y., Markiewicz, R.S., Barbiellini, B., Sun, J., Bansil, A.: Antiferromagnetic ground state of la 2 cuo 4: A parameter-free ab initio description. Phys. Rev. B 98(12), 125140 (2018)

    Article  ADS  Google Scholar 

  35. Storchak, V., Brewer, J., Eshchenko, D., Mengyan, P., Parfenov, O., Tokmachev, A., Dosanjh, P., Barilo, S.: Local magnetic order in la2cuo4 seen via m+ sr spectroscopy. In: J. Phys. Conf. Ser. 551, 012024 (2014) IOP Publishing

  36. Vaknin, D., Sinha, S., Moncton, D., Johnston, D., Newsam, J., Safinya, C., King, H., Jr.: Antiferromagnetism in la 2 cuo 4- y. Phys. Rev. Lett. 58(26), 2802 (1987)

    Article  ADS  Google Scholar 

  37. Ginder, J., Roe, M., Song, Y., McCall, R., Gaines, J., Ehrenfreund, E., Epstein, A.: Photoexcitations in la 2 cuo 4: 2-ev energy gap and long-lived defect states. Phys. Rev. B 37(13), 7506 (1988)

    Article  ADS  Google Scholar 

  38. Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809 (1947)

    Article  ADS  MATH  Google Scholar 

  39. Denisov, V., Denisova, L., Chumilina, L., Kirik, S.: High-temperature heat capacity of la 2 cuo 4. Phys. Solid State 55(7), 1381–1384 (2013)

    Article  ADS  Google Scholar 

  40. Nillasari, M., Kurniawan, B.: Structural and morphological characterization of cuprate superconductor la2-xsrxcuo4 (x= 0 and x= 0.07) synthesized by sol-gel method. In: J. Phys. Conf. Ser. 1170, 012060 (2019) IOP Publishing

  41. Sukumar, M., Kennedy, L.J., Vijaya, J.J., Al-Najar, B., Bououdina, M.: Co 2+ substituted la 2 cuo 4/lacoo 3 perovskite nanocomposites: synthesis, properties and heterogeneous catalytic performance. New J. Chem. 42(22), 18128–18142 (2018)

    Article  Google Scholar 

  42. Huang, Z., Zhao, Y., Hou, H., Han, P.: Electronic structural, elastic properties and thermodynamics of mg17al12, mg2si and al2y phases from first-principles calculations. Phys. B Condens. Matter 407(7), 1075–1081 (2012)

    Article  ADS  Google Scholar 

  43. Singh, D., Pickett, W.: Gradient-corrected density-functional studies of cacuo 2. Phys. Rev. B 44(14), 7715 (1991)

    Article  ADS  Google Scholar 

  44. Shen, Z.X., Spicer, W., King, D., Dessau, D., Wells, B.: Photoemission studies of high-tc superconductors: The superconducting gap. Science 267(5196), 343–350 (1995)

    Article  ADS  Google Scholar 

  45. Punkkinen, M., Kokko, K., Hergert, W., Väyrynen, I.: within the lsda+ u approach. J. Phys. Condens. Matter 11(11), 2341 (1999)

    Article  ADS  Google Scholar 

  46. Perry, J.K., Tahir-Kheli, J., Goddard, W.A., III.: Antiferromagnetic band structure of la 2 cuo 4: Becke-3-lee-yang-parr calculations. Phys. Rev. B 63(14), 144510 (2001)

    Article  ADS  Google Scholar 

  47. Sun, J., Ruzsinszky, A., Perdew, J.P.: Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115(3), 036402 (2015)

    Article  ADS  Google Scholar 

  48. Chakraborty, A., Dixit, M., Aurbach, D., Major, D.T.: Predicting accurate cathode properties of layered oxide materials using the scan meta-gga density functional. npj Comput. Mater. 4(1), 1–9 (2018)

  49. Badrtdinov, D., Volkova, O., Tsirlin, A.A., Solovyev, I., Vasiliev, A., Mazurenko, V.: Hybridization and spin-orbit coupling effects in the quasi-one-dimensional spin-1 2 magnet ba 3 cu 3 sc 4 o 12. Phys. Rev. B 94(5), 054435 (2016)

    Article  ADS  Google Scholar 

  50. Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A.H., Baltache, H., Rabah, M.: Elastic, electronic and optical properties of zns, znse and znte under pressure. Comput. Mater. Sci. 38(1), 29–38 (2006)

    Article  Google Scholar 

  51. Alouani, M., Jepsen, O., Andersen, O.: Interband optical conductivity of la2cuo4. Physica C: Superconductivity 153, 1233–1234 (1988)

    Article  ADS  Google Scholar 

  52. Uchida, S., Ido, T., Takagi, H., Arima, T., Tokura, Y., Tajima, S.: Optical spectra of la 2–x sr x cuo 4: Effect of carrier doping on the electronic structure of the cuo 2 plane. Phys. Rev. B 43(10), 7942 (1991)

    Article  ADS  Google Scholar 

  53. Baerends, E., Gritsenko, O., Van Meer, R.: The kohn-sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual kohn-sham orbital energies. Phys. Chem. Chem. Phys. 15(39), 16408–16425 (2013)

    Article  Google Scholar 

  54. Hedin, L.: New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139(3A), A796 (1965)

    Article  ADS  Google Scholar 

  55. Onida, G., Reining, L., Rubio, A.: Electronic excitations: density-functional versus many-body green’s-function approaches. Rev. Mod Phys. 74(2), 601 (2002)

  56. Sottile, F., Marsili, M., Olevano, V., Reining, L.: Efficient ab initio calculations of bound and continuum excitons in the absorption spectra of semiconductors and insulators. Phys. Rev. B 76(16), 161103 (2007)

    Article  ADS  Google Scholar 

  57. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B 15(2), 627–637 (1966)

  58. Kuberkar, D., Rajarajan, A., Balakrishnan, G., Gupta, L., Vijayaraghavan, R.: Structural and superconducting properties of the system la1- xprsrxcuo4. Physica C: Superconductivity 182(1–3), 149–152 (1991)

    Article  ADS  Google Scholar 

  59. Tsukada, A., Krockenberger, Y., Noda, M., Yamamoto, H., Manske, D., Alff, L., Naito, M.: New class of t‘-structure cuprate superconductors. Solid State Commun. 133(7), 427–431 (2005)

  60. Becke, A.: The quantum theory of atoms in molecules: from solid state to DNA and drug design. John Wiley & Sons (2007)

    Google Scholar 

  61. Laskowski, R., Blaha, P., Gallauner, T., Schwarz, K.: Single-layer model of the hexagonal boron nitride nanomesh on the rh (111) surface. Phys. Rev. Lett. 98(10), 106802 (2007)

    Article  ADS  Google Scholar 

  62. Zhong, S., Zhoulan, Y., Zhixing, W., Qiyuan, C.: Synthesis and electrochemical properties of al-doped livpo4f cathode materials for lithium-ion batteries. Rare Metals 26(5), 445–449 (2007)

    Article  Google Scholar 

  63. Kenjo, T., Yajima, S.: Semiconducting properties of (lni, lnii) cuo4 and of (ln, a) 2cuo4 (ln= rare earth, a= alkaline earth). Bull. Chem. Soc. Jpn. 50(11), 2847–2850 (1977)

    Article  Google Scholar 

  64. Anderson, P.W.: The resonating valence bond state in la2cuo4 and superconductivity. Science 235(4793), 1196–1198 (1987)

  65. Berber, M., Doumi, B., Mokaddem, A., Mogulkoc, Y., Sayede, A., Tadjer, A.: First-principle predictions of electronic properties and half-metallic ferromagnetism in vanadium-doped rock-salt sro. J. Electron. Mater. 47(1), 449–456 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Er-Rahmany or M. Azzouz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er-Rahmany, S., Loulidi, M., El Kenz, A. et al. From the Mott Insulator {La}{Pr}CuO\(_4\) to the Quantum Metal {La}{V}CuO\(_4\). J Supercond Nov Magn 35, 2999–3018 (2022). https://doi.org/10.1007/s10948-022-06352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06352-z

Keywords

Navigation