Skip to main content
Log in

Ni Substitution Effect on the Structural, Magnetic, Electronic, Elastic, Thermodynamic, Vibrational and Thermoelectric Properties of \(Co_{2-x}Ni_xMnSb\) (\(x=0,1,2\)) Ferromagnetic Heusler Alloys

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Ni substitution effect on the structural, magnetic, electronic, elastic, thermodynamic and thermoelectric properties of \(Co_{2-x}Ni_{x}MnSb\) Heusler alloys has been investigated employing the density functional theory (DFT). The results show that the \(Co_2 MnSb\) is stable in the ferromagnetic structure (FM) and acts as half-metal. Thus, the substitution of Co by Ni causes an increase in the inter-atomic distance, and it brings not only in FM interactions but also in the total magnetic moment as well which decreases from 6\(\mu _B\) to 4.04\(\mu _B\). The electronic properties of \(Co_{2-x}Ni_{x}MnSb\) have undergone a transition phase from half-metallic to metallic character due to the substitution effect of Co by Ni atom. According to the estimated elastic constants, Debye entropy and vibrational free energy, the compounds are mechanically and thermodynamically stable. Hence, both the phonon dispersion curves and the phonon density of states are also calculated and demonstrate that the compound is dynamically stable for \(x=0,1\) and dynamically unstable for \(x=2\). Moreover, the semi-classical Boltzmann transport theory in combination with DFT was used to evaluate and discussed the thermoelectric properties under temperature and substitution of Co by Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu, D., Cong, D., Sun, X., Chen, H., Nie, Z., Chen, Z., Zhang, Y., Zhu, C., Qu, Y., Zhu, J., et al.: J. Alloys Compd. 728, 655–658 (2017)

    Article  Google Scholar 

  2. Pons, J., Cesari, E., Seguí, C., Masdeu, F., Santamarta, R.: Mater. Sci. Eng. A 481, 57–65 (2008)

    Article  Google Scholar 

  3. De Groot, R., Mueller, F., Van Engen, P., Buschow, K.: Phys. Rev. Lett. 50(25), 2024 (1983)

    Article  ADS  Google Scholar 

  4. Kämmerer, S., Thomas, A., Hütten, A., Reiss, G.: Appl. Phys. Lett. 85(1), 79–81 (2004)

    Article  ADS  Google Scholar 

  5. Kervan, S., Kervan, N.: Solid State Commun. 151(17), 1162–1164 (2011)

    Article  ADS  Google Scholar 

  6. Cugini, F., Righi, L., van Eijck, L., Brück, E., Solzi, M.: J. Alloys Compd. 749, 211–216 (2018)

    Article  Google Scholar 

  7. Nayak, A.K., Suresh, K., Nigam, A., Coelho, A., Gama, S.: J. Appl. Phys. 106(5), 053901 (2009)

    Article  ADS  Google Scholar 

  8. Pasquale, M., Sasso, C.P., Lewis, L., Giudici, L., Lograsso, T., Schlagel, D.: Phys. Rev. B 72(9), 094435 (2005)

    Article  ADS  Google Scholar 

  9. Chabri, T., Barman, A., Chatterjee, S., Mollick, S., Nath, T., Mukherjee, D.: J. Alloys Compd. 863, 158485 (2021)

    Article  Google Scholar 

  10. Yu, S., Ma, L., Liu, G., Liu, Z., Chen, J., Cao, Z., Wu, G., Zhang, B., Zhang, X.: Appl. Phys. Lett. 90(24), 242501 (2007)

    Article  ADS  Google Scholar 

  11. Özdemir, E.G., Merdan, Z.: Physica E: Low-dimensional Systems and Nanostructures 133, 114790 (2021)

    Article  Google Scholar 

  12. Tritt, T.M., Subramanian, M.: MRS Bull. 31(3), 188–198 (2006)

    Article  Google Scholar 

  13. Uher, C., Yang, J., Hu, S., Morelli, D., Meisner, G.: Phys. Rev. B 59(13), 8615 (1999)

    Article  ADS  Google Scholar 

  14. Van Engen, P., Buschow, K., Jongebreur, R., Erman, M.: Appl. Phys. Lett. 42(2), 202–204 (1983)

    Article  ADS  Google Scholar 

  15. Katsnelson, M., Irkhin, V.Y., Chioncel, L., Lichtenstein, A., de Groot, R.A.: Rev. Mod. Phys. 80(2), 315 (2008)

    Article  ADS  Google Scholar 

  16. Ishida, S., Fujii, S., Kashiwagi, S., Asano, S.: J. Phys. Soc. Jpn. 64(6), 2152–2157 (1995)

    Article  ADS  Google Scholar 

  17. Candan, A., Uğur, G., Charifi, Z., Baaziz, H., Ellialtıoğlu, M.: J. Alloys Compd. 560, 215–222 (2013)

    Article  Google Scholar 

  18. Sharma, V., Solanki, A., Kashyap, A.: J. Magn. Magn. Mater. 322(19), 2922–2928 (2010)

    Article  ADS  Google Scholar 

  19. Buschow, K.v., Van Engen, P., Jongebreur, R.: J. Magn. Magn. Mater. 38(1), 1–22 (1983)

  20. Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Felser, C., Lin, H.J.: Appl. Phys. Lett. 88(3), 032503 (2006)

    Article  ADS  Google Scholar 

  21. Dubenko, I., Khan, M., Pathak, A.K., Gautam, B.R., Stadler, S., Ali, N.: J. Magn. Magn. Mater. 321(7), 754–757 (2009)

    Article  ADS  Google Scholar 

  22. Liu, J., Gottschall, T., Skokov, K.P., Moore, J.D., Gutfleisch, O.: Nat. Mater. 11(7), 620–626 (2012)

    Article  ADS  Google Scholar 

  23. Wang, B., Liu, Y., Ren, P., Xia, B., Ruan, K., Yi, J., Ding, J., Li, X., Wang, L.: Phys. Rev. Lett. 106(7), 077203 (2011)

    Article  ADS  Google Scholar 

  24. Wang, B., Liu, Y., Wang, L., Huang, S., Zhao, Y., Yang, Y., Zhang, H.: J. Appl. Phys. 104(4), 043916 (2008)

    Article  ADS  Google Scholar 

  25. Bruno, N.M., Yegin, C., Karaman, I., Chen, J.H., Ross, J.H., Liu, J., Li, J., et al.: Acta. Mater. 74 (2014)

  26. He, W., Huang, H., Liu, Z., Ma, X.: Intermetallics 90, 140–146 (2017)

    Article  Google Scholar 

  27. Jazideh, A., Boochani, A., Nia, B.A.: Phys. Lett. A 414, 127622 (2021)

    Article  Google Scholar 

  28. Baerends, E.: Perspective on “self-consistent equations including exchange and correlation effects”. In: Theoretical Chemistry Accounts, pp. 265–269. Springer (2000)

  29. Allen, P.: Kluwer International Series In Engineering And Computer Science pp. 219–250 (1996)

  30. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., et al.: J. Phys. Condens. Matter 29(46), 465901 (2017)

    Article  Google Scholar 

  31. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  32. Madsen, G.K., Singh, D.J.: Comput. Phys. Commun. 175(1), 67–71 (2006)

    Article  ADS  Google Scholar 

  33. Scheidemantel, T., Ambrosch-Draxl, C., Thonhauser, T., Badding, J., Sofo, J.O.: Phys. Rev. B 68(12), 125210 (2003)

    Article  ADS  Google Scholar 

  34. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  35. Vanderbilt, D.: Phys. Rev. B 41(11), 7892 (1990)

    Article  ADS  Google Scholar 

  36. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13(12), 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  37. Methfessel, M., Paxton, A.: Phys. Rev. B 40(6), 3616 (1989)

    Article  ADS  Google Scholar 

  38. Birch, F.: Phys. Rev. 71(11), 809 (1947)

    Article  ADS  Google Scholar 

  39. Ak, F., Güçlü, F., Saatçi, B., Kervan, N., Kervan, S.: J. Supercond. Nov. Magn. 29(2), 409–416 (2016)

    Article  Google Scholar 

  40. Ak, F., Öz, E., Saatçi, B.: Intermetallics 111, 106491 (2019)

    Article  Google Scholar 

  41. Aksoy, S., Acet, M., Wassermann, E.F., Krenke, T., Moya, X., Manosa, L., Planes, A., P. Deen, P.: Philos. Mag. 89(22-24), 2093–2109 (2009)

  42. Ghosh, S., Ghosh, S.: Phys. Rev. B 99(6), 064112 (2019)

    Article  ADS  Google Scholar 

  43. Huang, H., Luo, S., Yao, K.: Phys. B Condens. Matter 406(8), 1368–1373 (2011)

    Article  ADS  Google Scholar 

  44. Hurd, C., McAlister, S.: J. Magn. Magn. Mater. 61(1–2), 114–120 (1986)

    Article  ADS  Google Scholar 

  45. Khan, M., Dubenko, I., Stadler, S., Ali, N.: J. Phys. Condens. Matter 20(23), 235204 (2008)

    Article  ADS  Google Scholar 

  46. Lashgari, H., Abolhassani, M., Boochani, A., Sartipi, E., Taghavi-Mendi, R., Ghaderi, A.: Indian J. Phys. 90(8), 909–916 (2016)

    Article  ADS  Google Scholar 

  47. Manea, A., Monnereau, O., Notonier, R., Guinneton, F., Logofatu, C., Tortet, L., Garnier, A., Mitrea, M., Negrila, C., Branford, W., et al.: J. Cryst. Growth 275(1–2), e1787–e1792 (2005)

    Article  ADS  Google Scholar 

  48. Oz, E., Ak, F., Saatci, B.: Philos. Mag. 101(2), 242–256 (2021)

    Article  ADS  Google Scholar 

  49. Webster, P.: J. Phys. Chem. Solids 32(6), 1221–1231 (1971)

    Article  ADS  Google Scholar 

  50. Galanakis, I., Dederichs, P., Papanikolaou, N.: Phys. Rev. B 66(17), 174429 (2002)

    Article  ADS  Google Scholar 

  51. Webster, P., Mankikar, R.: J. Magn. Magn. Mater. 42(3), 300–308 (1984)

    Article  ADS  Google Scholar 

  52. Şaşıog, E., Sandratskii, L., Bruno, P., et al.: J. Magn. Magn. Mater. 290, 385–387 (2005)

    Article  ADS  Google Scholar 

  53. Waller, I.: Acta Crystallogr. 9(10), 837–838 (1956)

    Article  Google Scholar 

  54. Wu, S.C., Fecher, G.H., Shahab Naghavi, S., Felser, C.: J. Appl. Phys. 125(8), 082523 (2019)

    Article  ADS  Google Scholar 

  55. Benguerine, O., Nabi, Z., Benichou, B., Bouabdallah, B., Bouchenafa, H., Maachou, M., Ahuja, R.: Rev. Mex. Fis. 66(2), 121–126 (2020)

    Article  Google Scholar 

  56. Ağduk, S., Gökoğlu, G.: J. Alloys Compd. 511(1), 9–13 (2012)

    Article  Google Scholar 

  57. Born, M., Huang, K.: Theory of crystal lattices, clarendon (1956)

  58. Azouaoui, A., Benzakour, N., Hourmatallah, A., Bouslykhane, K.: Solid State Sci. 105, 106260 (2020)

    Article  Google Scholar 

  59. Anderson, O.L.: J. Phys. Chem. Solids 24(7), 909–917 (1963)

    Article  ADS  Google Scholar 

  60. Schreiber, E., Anderson, O.L., Soga, N., et al.: Elastic constants and their measurement, vol. 6. McGraw-Hill New York (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Toual.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toual, Y., Azouaoui, A., Mouchou, S. et al. Ni Substitution Effect on the Structural, Magnetic, Electronic, Elastic, Thermodynamic, Vibrational and Thermoelectric Properties of \(Co_{2-x}Ni_xMnSb\) (\(x=0,1,2\)) Ferromagnetic Heusler Alloys. J Supercond Nov Magn 35, 2943–2954 (2022). https://doi.org/10.1007/s10948-022-06346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06346-x

Keywords

Navigation