Skip to main content
Log in

Inverse Magnetocaloric Effect and Kinetic Arrest Behavior in As-Cast Gd2In at Cryogenic Temperatures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetocaloric effect (MCE) in samples of the Gd2In compound has been studied by the direct method in temperature range of 4–240 K in magnetic fields of Bitter coil up to 14 T. The maximum detected value of the inverse MCE at cryogenic temperatures in the 1st-order metamagnetic phase transition (PT) is ∆Tad =  − 0.5 K at T0 = 45 K in the field of 1.8 T. The MCE in this temperature range changes sign with increasing of the magnetic field up to 5 T, and the direct MCE is observed with further increasing of the field. The kinetic arrest of the 1st-order metamagnetic PT is observed on the temperature dependence of magnetization in the steady magnetic field of 5 T. The direct MCE in the Curie temperature Tc = 200 K increases with increasing of the magnetic field, and the effect maximum shifts to higher temperatures. The maximum detected value of the direct MCE is ∆Tad = 7.8 K at T0 = 215 K in the field of 14 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giauque, W.F.: J. Am. Chem. Soc. 49, 1864 (1927). https://doi.org/10.1021/ja01407a003

    Article  Google Scholar 

  2. Tishin, A.M., Spichkin, Y.I.: The magnetocaloric effect and its applications. IOP Publishing, Bristol (2003)

    Book  Google Scholar 

  3. Zimm, C.B., Ratzmann, P.M., Barclay, J.A., Green, G.F., Chafe, J.N.: Adv. Cryog. Eng. 36, 763 (1990). https://doi.org/10.1007/978-1-4613-9880-6_99

    Article  Google Scholar 

  4. Park, I., Jeong, S.: Cryogenics 88, 106 (2017). https://doi.org/10.1016/j.cryogenics.2017.09.008

    Article  ADS  Google Scholar 

  5. Zhang, H., Gimaev, R., Kovalev, B., Kamilov, K., Zverev, V., Tishin, A.: Physica B 558, 65 (2019). https://doi.org/10.1016/j.physb.2019.01.035

    Article  ADS  Google Scholar 

  6. Numazawa, T., Kamiya, K., Utaki, T., Matsumoto, K.: Cryogenics 62, 185 (2014). https://doi.org/10.1016/j.cryogenics.2014.03.016

    Article  ADS  Google Scholar 

  7. Andreenko, A.S., Belov, K.P., Nikitin, S.A., Tishin, A.M.: Sov. Phys. Usp. 32, 649 (1989). https://doi.org/10.1070/PU1989v032n08ABEH002745

    Article  ADS  Google Scholar 

  8. Timmerhaus, K.D., Reed, R.P. (eds.): Cryogenic engineering: fifty years of progress. Springer Science & Business Media, New York (2007)

    Google Scholar 

  9. Suslov, D.A., Shavrov, V.G. Koledov, V.V., Mashirov, A.V., Terentyev, Y.A., Petrov, A.O., Kamantsev, A.P., Samvelov, A.V., Yasev, S.G., Taskaev, S.V., Kolesov, K.A.: Chelyabinsk Phys. Math. J. 5, 612 (2020). https://doi.org/10.47475/2500-0101-2020-15420

  10. Aliev, A.M., Batdalov, A.B., Khanov, L.N., Kamantsev, A.P., Koledov, V.V., Mashirov, A.V., Shavrov, V.G., Grechishkin, R.M., Kaul’, A.R., Sampath, V.: Appl. Phys. Lett. 109, 202407 (2016). https://doi.org/10.1063/1.4968241

    Article  ADS  Google Scholar 

  11. Kamantsev, A.P., Amirov, A.A., Koshkid’ko, Yu.S., Salazar Mejía, C., Mashirov, A.V., Aliev, A.M., Koledov, V.V., Shavrov, V.G.: Phys. Solid State 62(1), 160 (2020). https://doi.org/10.1134/S1063783420010151

  12. Koshkid’ko, Y., Pandey, S., Quetz, A., Aryal, A., Dubenko, I., Cwik, J., Dilmieva, E., Granovsky, A., Lähderanta, E., Zhukov, A., Stadler, S., Ali, N.: J. Alloy. Compd. 695, 3348 (2017). https://doi.org/10.1016/j.jallcom.2016.12.032

    Article  Google Scholar 

  13. Dilmieva, E.T., Koshkidko, Yu.S., Kamantsev, A.P., Koledov, V.V., Mashirov, A.V., Shavrov, V.G., Khovaylo, V.V., Lyange, M.V., Cwik, J., Gonzalez-Legarreta, L., Grande, H.B.: IEEE T. Magn. 53(11), 2503705 (2017). https://doi.org/10.1109/TMAG.2017.2702577

    Article  Google Scholar 

  14. Koshkidko, Y.S., Pastushenkov, Y.G., Semenova, E.M., Ivanova, T.I.: Perspective materials S6–1, 81 (2008). (on Russian).

  15. Zheng, X.Q., Xu, Z.Y., Zhang, B., Hu, F.X., Shen, B.G.: J. Magn. Magn. Mater. 421, 448 (2017). https://doi.org/10.1016/j.jmmm.2016.08.048

    Article  ADS  Google Scholar 

  16. Nikitin, S.A., Skokov, K.P., Koshkid’ko, Yu.S., Pastushenkov, Yu.G., Ivanova, T.I.: Phys. Rev. Lett. 105, 137205 (2010). https://doi.org/10.1103/PhysRevLett.105.137205

    Article  ADS  Google Scholar 

  17. Nikitin, S.A., Ivanova, T.I., Zvonov, A.I., Koshkid’ko, Y.S., Ćwik, J., Rogacki, K.: Acta Mater. 161, 331 (2018). https://doi.org/10.1016/j.actamat.2018.09.017

    Article  ADS  Google Scholar 

  18. McAlister, S.P.: J. Phys. F Met. Phys. 14(9), 2167 (1984). https://doi.org/10.1088/0305-4608/14/9/021

    Article  ADS  Google Scholar 

  19. Bazela, W., Szytuła, A.: J. Less-Common Metals 138(1), 123 (1988). https://doi.org/10.1016/0022-5088(88)90242-1

    Article  Google Scholar 

  20. Jee, C.S., Lin, C.L., Mihalisin, T., Wang, X.Q.: J. Appl. Phys. 79(8), 5403 (1996). https://doi.org/10.1063/1.362319

    Article  ADS  Google Scholar 

  21. Ilyn, M.I., Tishin, A.M., Gschneidner, K.A., Pecharsky, V.K., Pecharsky, A.O.: Magnetothermal properties of polycrystalline Gd2In. In: Ross, R.G. (ed.) Cryocoolers 11, pp. 457–464. Springer, Boston (2002)

    Chapter  Google Scholar 

  22. Singh, V., Bhattacharyya, A., Majumdar, S., Dasgupta, I.: J. Appl. Phys. 111, 053709 (2012). https://doi.org/10.1063/1.3693306

    Article  ADS  Google Scholar 

  23. Stampe, P.A., Zhou, X.Z., Kunkel, H.P., Cowen, J.A., Williams, G.: J. Phys.: Condens. Matter 9(18), 3763 (1997). https://doi.org/10.1088/0953-8984/9/18/015

    Article  ADS  Google Scholar 

  24. Bhattacharyya, A., Giri, S., Majumdar, S.: J. Magn. Magn. Mater. 324(6), 1239 (2012). https://doi.org/10.1016/j.jmmm.2011.11.023

    Article  ADS  Google Scholar 

  25. Yang, Y., Xie, Y., Zhou, X., Zhong, H., Jiang, Q., Ma, S., Zhong, Z., Cui, W., Wang, Q.: AIP Adv. 8(5), 056406 (2018). https://doi.org/10.1063/1.5005573

    Article  ADS  Google Scholar 

  26. Taskaev, S.V., Khovaylo, V.V., Ulyanov, M.N., Bataev, D.S., Basharova, A.A., Kononova, M.V., Plakhotskiy, D.V., Bogush, M.Y., Zherebtsov, D.A.: Lett Mater 11(1), 104 (2021). https://doi.org/10.22226/2410-3535-2021-1-104-108

  27. Sharma, S., Kumar, P.: AIP Adv. 12(3), 035127 (2022). https://doi.org/10.1063/9.0000289

    Article  ADS  Google Scholar 

  28. Cakır, A., Acet, M., Farle, M.: Phys. Status Solidi B 251(10), 2120 (2014). https://doi.org/10.1002/pssb.201451301

    Article  ADS  Google Scholar 

  29. Chattopadhyay, M.K., Roy, S.B., Chaddah, P.: Phys. Rev. B 72(18), 180401 (2005). https://doi.org/10.1103/PhysRevB.72.180401

    Article  ADS  Google Scholar 

  30. Ito, W., Ito, K., Umetsu, R.Y., Kainuma, R., Koyama, K., Watanabe, K., Fujita, A., Oikawa, K., Ishida, K., Kanomata, T.: Appl. Phys. Lett. 92(2), 021908 (2008). https://doi.org/10.1063/1.2833699

    Article  ADS  Google Scholar 

  31. Lino-Zapata, F.M., Yan, H.L., Ríos-Jara, D., Llamazares, J.S., Zhang, Y.D., Zhao, X., Zuo, L.: J. Magn. Magn. Mater. 446, 253 (2018). https://doi.org/10.1016/j.jmmm.2017.09.037

    Article  ADS  Google Scholar 

  32. Mashirov, A.V., Kamantsev, A.P., Koshelev, A.V., Ovchenkov, E.A., Dilmieva, E.T., Los, A.S., Aliev, A.M., Koledov, V.V., Shavrov, V.G.: IEEE T. Magn. 53(11), 2003904 (2017). https://doi.org/10.1109/TMAG.2017.2697205

    Article  Google Scholar 

  33. Koshkid’ko, Y.S., Ćwik, J., Ivanova, T.I., Nikitin, S.A., Miller, M., Rogacki, K.: J. Magn. Magn. Mater. 433, 234 (2017). https://doi.org/10.1016/j.jmmm.2017.03.027

    Article  ADS  Google Scholar 

  34. Koshkid’ko, Y.S., Dilmieva, E.T., Cwik, J., Rogacki, K., Kowalska, D., Kamantsev, A.P., Koledov, V.V., Mashirov, A.V., Shavrov, V.G., Valkov, V.I., Golovchan, A.V., Sivachenko, A.P., Shevyrtalov, S.N., Rodionova, V.V., Shchetinin, I.V., Sampath, V.: J. Alloy. Compd. 798, 810 (2019). https://doi.org/10.1016/j.jallcom.2019.05.246

    Article  Google Scholar 

  35. Nikitin, S.A., Andreenko, A.S., Tishin, A.M., Arkharov, A.M., Zherdev, A.A.: Phys. Met. Metallogr. 60(4), 56 (1985)

    Google Scholar 

  36. Pankratov, NYu., Zvonov, A.I., Smarzhevskaya, A.I., Nikitin, S.A., Karpenkov, DYu., Karpenkov, AYu.: Bull. Russ. Acad. Sci. Phys. 77(10), 1268 (2013). https://doi.org/10.3103/S1062873813100262

    Article  Google Scholar 

  37. Romero-Muniz, C., Tamura, R., Tanaka, S., Franco, V.: Phys. Rev. B 94(13), 134401 (2016). https://doi.org/10.1103/PhysRevB.94.134401

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the fruitful discussions with A.G. Gamzatov.

Funding

The studies of magnetocaloric effect in high magnetic fields were supported by the Russian Science Foundation within project no. 20–19-00745. ST thanks the Russian Science Foundation for supporting of the sample synthesis and XRD-study within project no. 22–22-20033. The magnetization studies in steady magnetic fields were supported by the Grant of the President of the Russian Federation for the state support of the leading scientific schools NSh-2394.2022.1.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kamantsev.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamantsev, A.P., Koshkidko, Y.S., Taskaev, S.V. et al. Inverse Magnetocaloric Effect and Kinetic Arrest Behavior in As-Cast Gd2In at Cryogenic Temperatures. J Supercond Nov Magn 35, 2181–2186 (2022). https://doi.org/10.1007/s10948-022-06336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06336-z

Keywords

Navigation