Skip to main content
Log in

Design of Multiple Resonant Reflectance Filter Using One-Dimensional Fibonacci Superconductor Photonic Crystal

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper demonstrates the generation of multiple resonant reflectance peaks in the optical spectra of one-dimensional superconductor dielectric photonic crystal (1D SDPC) based on the periodic, Fibonacci and inverse Fibonacci sequences by numerical simulation using transfer matrix method (TMM). We studied the effect of the variation of angle, number of periods, and different stages of Fibonacci sequence on the optical spectra of the 1D SDPC. We demonstrated that variation in the temperature and angle of incidence provides spatial filtering and control on the line width of the reflection peaks. The amplitude of the reflectance peak raises with the increase in the number of periods. Multiple resonance reflectance peaks emerge at a higher stage of the Fibonacci series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059 (1987)

    Article  ADS  Google Scholar 

  2. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486 (1987)

    Article  ADS  Google Scholar 

  3. Lodahl, P., et al.: Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430(7000), 654–657 (2004)

    Article  ADS  Google Scholar 

  4. Altug, H., Englund, D., Vučković, J.: Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2(7), 484–488 (2006)

    Article  Google Scholar 

  5. Sheng, X., Broderick, L.Z., Kimerling, L.C.: Photonic crystal structures for light trapping in thin-film Si solar cells: modeling, process and optimizations. Optics Communications 314, 41–47 (2014)

    Article  ADS  Google Scholar 

  6. Zhou, D., Biswas, R.: Photonic crystal enhanced light-trapping in thin film solar cells. J. Appl. Phys. 103(9), 093102 (2008)

    Article  ADS  Google Scholar 

  7. Fan, S., et al.: Optimal bistable switching in non-linear photonic crystals. Google Patents. (2003)

  8. Yu, Y., et al.: Fano resonance control in a photonic crystal structure and its application to ultrafast switching. Appl. Phys. Lett. 105(6), 061117 (2014)

    Article  ADS  Google Scholar 

  9. Golmohammadi, S., Rostami, A.: Optical filters using optical multi-layer structures for optical communication systems. Fiber Integr. Opt. 29(3), 209–224 (2010)

    Article  ADS  Google Scholar 

  10. Hawkeye, M.M., Brett, M.J.: Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films. J. Appl. Phys. 100(4), 044322 (2006)

    Article  ADS  Google Scholar 

  11. Vasconcelos, M., Mauriz, P., Albuquerque, E.: Optical filters based in quasiperiodic photonic crystal. Microelectron. J. 40(4), 851–853 (2009)

    Article  Google Scholar 

  12. Aly, A.H., Sabra, W., Elsayed, H.A.: Dielectric and superconducting photonic crystals. J. Supercond. Novel Magn. 26(3), 553–560 (2013)

    Article  Google Scholar 

  13. Asadi, R., et al.: Tunable Fano resonance in large scale polymer-dielectric slab photonic crystals. Microelectron. Eng. 97, 201–203 (2012)

    Article  Google Scholar 

  14. Halevi, P.A., Ramos-Mendieta, F.: Tunable photonic crystals with semiconducting constituents. Phys. Rev. Lett. 85(9): 1875 (2000)

  15. Meisels, R., Glushko, O., Kuchar, F.: Tuning the flow of light in semiconductor-based photonic crystals by magnetic fields. Photonics Nanostruct. Fundam. Appl, 10(1): 60–68 (2012)

  16. Xu, C., et al.: Semiconductor-based tunable photonic crystals by means of an external magnetic field. Phys. Rev. B 68(19), 193201 (2003)

    Article  ADS  Google Scholar 

  17. Shiveshwari, L., Mahto, P.: Photonic band gap effect in one-dimensional plasma dielectric photonic crystals. Solid State Commun. 138(3), 160–164 (2006)

    Article  ADS  Google Scholar 

  18. Ooi, C.R., et al.: Photonic band gap in a superconductor-dielectric superlattice. Phys. Rev. B 61(9), 5920 (2000)

    Article  ADS  Google Scholar 

  19. Wu, C.-J., Chen, M.-S., Yang, T.-J.: Photonic band structure for a superconductor-dielectric superlattice. Physica. C. 432(3), 133–139 (2005)

    Article  ADS  Google Scholar 

  20. Vafapour, Z.: Near infrared biosensor based on classical electromagnetically induced reflectance (Cl-EIR) in a planar complementary metamaterial. Optics Commun 387, 1–11 (2017)

    Article  ADS  Google Scholar 

  21. Athe, P., Srivastava, S.: Tunable multiple Fano Resonances in one-dimensional photonic crystal containing multiple superconductor. J. Supercond. Novel Magn. 1–6 (2016)

  22. Athe, P., Srivastava, S.: Tunable Fano resonance in one-dimensional superconducting photonic crystal. J. Supercond. Novel Magn. 28(8), 2331–2336 (2015)

    Article  Google Scholar 

  23. Aly, A.H., et al.: Fano resonance by means of the one-dimensional superconductor photonic crystals. J. Supercond. Novel Magn. 31(12), 3827–3833 (2018)

    Article  Google Scholar 

  24. Mohamed, A.M., et al.: A defective one-dimensional superconducting photonic crystal design for the generation of the Fano resonance feature. Phys. Scr. 95(11), 115503 (2020)

    Article  ADS  Google Scholar 

  25. Thapa, K.B., et al.: Tunneling properties of electromagnetic wave in slab superconducting material. Optoelectron. Lett. 7(4), 277–281 (2011)

    Article  ADS  Google Scholar 

  26. Wu, C.-J., Liu, C.-L., Kuo, W.-K.: Analysis of thickness-dependent optical properties in a one-dimensional superconducting photonic crystal. Journal of Electromagnetic Waves and Applications 23(8–9), 1113–1122 (2009)

    Article  Google Scholar 

  27. Vardeny, Z.V., Nahata, A., Agrawal, A.: Optics of photonic quasicrystals. Nat. Photonics 7(3), 177–187 (2013)

    Article  ADS  Google Scholar 

  28. Kohmoto, M., Sutherland, B., Iguchi, K.: Localization of optics: quasiperiodic media. Phys. Rev. Lett. 58(23), 2436 (1987)

    Article  ADS  Google Scholar 

  29. Abdelaziz, K.B., et al.: A broad omnidirectional reflection band obtained from deformed Fibonacci quasi-periodic one dimensional photonic crystals. J. Opt. A: Pure Appl. Opt. 7(10), 544 (2005)

    Article  ADS  Google Scholar 

  30. Lusk, D., Abdulhalim, I., Placido, F.: Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal. Optics Communications 198(4), 273–279 (2001)

    Article  ADS  Google Scholar 

  31. Teimourpour, M.H.: Nonreciprocal bistability in nonlinear fractal Fibonacci photonic crystals. J. Opt. 14(3), 035501 (2012)

    Article  ADS  Google Scholar 

  32. Wu, J.-J., Gao, J.-X.: Transmission properties of Fibonacci quasi-periodic one-dimensional superconducting photonic crystals. Optik (Stuttg) 123(11), 986–988 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  33. Zhang, H.-F., et al.: Investigating the omnidirectional photonic band gap in one-dimensional superconductor–dielectric photonic crystals with a modified ternary Fibonacci quasiperiodic structure. J. Supercond. Novel Magn. 26(12), 3391–3400 (2013)

    Article  Google Scholar 

  34. Zhang, L., et al.: Transmission properties of Fibonacci quasi-periodic one-dimensional photonic crystals containing indefinite metamaterials. Optics Communications 284(3), 703–706 (2011)

    Article  ADS  Google Scholar 

  35. Mehdizadeh, F., Alipour-Banaei, H.: Bandgap management in two-dimensional photonic crystal Thue-Morse structures. J. Opt. Commun. 34(1), 61–65 (2013)

    Article  Google Scholar 

  36. Moretti, L., Mocella, V.: Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence. Opt. Express 15(23), 15314–15323 (2007)

    Article  ADS  Google Scholar 

  37. Stoffer, R., Kivshar, Y.: Numerical study of optical bistability in a nonlinear photonic crystal notch filter. In: Nonlinear Optics for the Information Society, pp. 145–145. Springer (2001)

    Chapter  Google Scholar 

  38. Chu, T., et al.: Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide. IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006)

    Article  ADS  Google Scholar 

  39. Ooi, C.R., Yeung, T.A.: Polariton gap in a superconductor–dielectric superlattice. Phys. Lett. A 259(5), 413–419 (1999)

    Article  ADS  Google Scholar 

  40. Thapa, K.B., Srivastava, S., Tiwari, S.: Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals. J. Supercond. Novel Magn. 23(4), 517–525 (2010)

    Article  Google Scholar 

  41. Harshman, D., Mills, A., Jr.: Concerning the nature of high-T c superconductivity: survey of experimental properties and implications for interlayer coupling. Phys. Rev. B 45(18), 10684 (1992)

    Article  ADS  Google Scholar 

  42. Born, M. Wolf, E.Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. CUP Archive. (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Athe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athe, P., Athe, P., Srivastava, S. et al. Design of Multiple Resonant Reflectance Filter Using One-Dimensional Fibonacci Superconductor Photonic Crystal. J Supercond Nov Magn 35, 2689–2697 (2022). https://doi.org/10.1007/s10948-022-06318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06318-1

Keywords

Navigation