Skip to main content
Log in

Magnetic Ion Substitution and Peak Effect in YBCO: the Strange Case of Y1–xGdxBa2Cu3O7–δ

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We present the results of a study of the superconducting and paramagnetic properties of polycrystalline Y1–xGdxBa2Cu3O7–δ samples. The critical current density and critical temperature of YBCO were weakly decreased by the Gd doping. A peak effect, which is a nonmonotonic dependence of the critical current density on magnetic field, was detected for all samples. The peak position shifted to higher magnetic fields with increasing Gd content. This behavior is opposite to the shift of the peak effect observed for other YBCO compounds doped by magnetic ions. This unusual behavior is apparently related to the realized granular structure instead of the type of doping ion. A correlation between the peak position and the granule size was found in the investigated samples and other polycrystalline YBCO compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kwok, W.K., Welp, U., Glatz, A., Koshelev, A.E., Kihlstrom, K.J., Crabtree, G.W.: Vortices in high-performance high-temperature superconductors. Reports Prog. Phys. 79, 116501 (2016). https://doi.org/10.1088/0034-4885/79/11/116501

    Article  ADS  Google Scholar 

  2. Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., Sumption, M.: Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor. Nature 430, 867–870 (2004). https://doi.org/10.1038/nature02792

    Article  ADS  Google Scholar 

  3. Koshelev, A.E., Kolton, A.B.: Theory and simulations on strong pinning of vortex lines by nanoparticles. Phys. Rev. B. 84, 104528 (2011). https://doi.org/10.1103/PhysRevB.84.104528

    Article  ADS  Google Scholar 

  4. Surdu, A.E., Hamdeh, H.H., Al-Omari, I.A., Sellmyer, D.J., Socrovisciuc, A.V., Prepelita, A.A., Koparan, E.T., Yanmaz, E., Ryazanov, V.V., Hahn, H., Sidorenko, A.S.: Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields. Beilstein J. Nanotechnol. 289(2), 809–813 (2011). https://doi.org/10.3762/BJNANO.2.89

    Article  Google Scholar 

  5. Taylan Koparan, E., Surdu, A., Awawdeh, A., Sidorenko, A., Yanmaz, E.: Artificial pinning centers on MgB 2 superconducting thin films coated by FeO nanoparticles. J. Supercond. Nov. Magn. 25, 1761–1767 (2012). https://doi.org/10.1007/S10948-012-1533-1/FIGURES/7

    Article  Google Scholar 

  6. Taylan Koparan, E., Surdu, A., Sidorenko, A., Yanmaz, E.: Artificial pinning centers created by Fe2O3 coating on MgB2 thin films. Phys. C Supercond. 473, 1–5 (2012). https://doi.org/10.1016/J.PHYSC.2011.11.004

    Article  ADS  Google Scholar 

  7. Altin, E., Gokhfeld, D.M., Komogortsev, S.V., Altin, S., Yakinci, M.E.: Hysteresis loops of MgB2 + Co composite tapes. J. Mater. Sci. Mater. Electron. 24, 1341–1347 (2013). https://doi.org/10.1007/s10854-012-0931-2

    Article  Google Scholar 

  8. Lepeshev, A.A., Patrin, G.S., Yurkin, G.Y., Vasiliev, A.D., Nemtsev, I.V., Gokhfeld, D.M., Balaev, A.D., Demin, V.G., Bachurina, E.P., Karpov, I.V., Ushakov, A.V., Fedorov, L.Y., Irtyugo, L.A., Petrov, M.I.: Magnetic properties and critical current of superconducting nanocomposites (1–x)YBa2Cu3O7−δ + xCuO. J. Supercond. Nov. Magn. 31, 3841–3845 (2018). https://doi.org/10.1007/s10948-018-4676-x

    Article  Google Scholar 

  9. Sidorenko, A., Scheidt, E.W., Haider, F., Klemm, M., Horn, S., Konopko, L., Tidecks, R.: The effect of Cu/Mn substitution in 2223 Bi-based HTSC. Phys. B Condens. Matter. 321, 298–300 (2002). https://doi.org/10.1016/S0921-4526(02)00865-7

    Article  ADS  Google Scholar 

  10. Huhtinen, H., Awana, V.P.S., Gupta, A., Kishan, H., Laiho, R., Narlikar, A.V.: Pinning centres and enhancement of critical current density in YBCO doped with Pr. Caand Ni. Supercond. Sci. Technol. 20, S159 (2007). https://doi.org/10.1088/0953-2048/20/9/S08

    Article  ADS  Google Scholar 

  11. Petrov, M.I., Gokhfeld, Y.S., Balaev, D.A., Popkov, S.I., Dubrovskiy, A.A., Gokhfeld, D.M., Shaykhutdinov, K.A.: Pinning enhancement by heterovalent substitution in Y1-xRExBa2Cu3O7-δ. Supercond. Sci. Technol. 21, (2008). https://doi.org/10.1088/0953-2048/21/8/085015

  12. Moshensky, A.A., Tischenko, L.P., Sidorenko, A.S., Fogel, N.Y.: Critical currents of thin films and their connection with inhomogeneities of superconductor. Sov. J. Phys. Sol. State. 3, 418–427 (1976)

    Google Scholar 

  13. Freyhardt, H.C.: Radiation-induced flux pinning in type II superconductors. J. Low Temp. Phys. 32, 101–129 (1978). https://doi.org/10.1007/BF00116908

    Article  ADS  Google Scholar 

  14. Fischer, D.X., Prokopec, R., Emhofer, J., Eisterer, M.: The effect of fast neutron irradiation on the superconducting properties of REBCO coated conductors with and without artificial pinning centers. Supercond. Sci. Technol. 31, 044006 (2018). https://doi.org/10.1088/1361-6668/aaadf2

    Article  ADS  Google Scholar 

  15. Uspenskaya, L., Naumenko, I., Emelchenko, G., Boguslavskii, Y., Zver’kov, S., Yakimov, E., Litzkendorf, D., Gawalek, W., Caplin, A.: Effect of mesoscopic inhomogeneities on the critical current of bulk melt-textured YBCO. Phys. C Supercond. 390, 127–133 (2003). https://doi.org/10.1016/S0921-4534(03)00629-4

  16. Hoffmann, A., Prieto, P., Metlushko, V., Schuller, I.K.: Superconducting vortex pinning with magnetic dots: does size and magnetic configuration matter? J. Supercond. Nov. Magn. 25, 2187–2191 (2012). https://doi.org/10.1007/s10948-012-1647-5

    Article  Google Scholar 

  17. Maksimova, A.N., Kashurnikov, V.A., Moroz, A.N., Gokhfeld, D.M.: Trapped field in superconductors with perforations. J. Supercond. Nov. Magn. 35, 283–290 (2022). https://doi.org/10.1007/s10948-021-06067-7

    Article  Google Scholar 

  18. Yong, F., Lian, Z.: Superconducting properties and microstructures of the powder melting processed YHoBaCuO and YGdBaCuO superconductors. Phys. C Supercond. 202, 298–302 (1992). https://doi.org/10.1016/0921-4534(92)90174-B

    Article  ADS  Google Scholar 

  19. Goodilin, E.A., Kvartalov, D.B., Oleynikov, N.N., Tretyakov, Y.D.: Modified melt techniques for high Jc YBCO preparation. Phys. C Supercond. 235–240, 449–450 (1994). https://doi.org/10.1016/0921-4534(94)91448-6

    Article  ADS  Google Scholar 

  20. Öztürk, K., Çelik, Ş, Çevik, U., Yanmaz, E.: The effect of Gd diffusion-doped on structural and superconducting properties of YBa2Cu3O7−x superconductors. J. Alloys Compd. 433, 46–52 (2007). https://doi.org/10.1016/J.JALLCOM.2006.06.082

    Article  Google Scholar 

  21. Theuss, H., Kronmüller, H.: Magnetic properties of Y1-xGdxBa2Cu3O7-δ polycrystals. Phys. C Supercond. its Appl. 242, 155–163 (1995). https://doi.org/10.1016/0921-4534(94)02404-9

    Article  ADS  Google Scholar 

  22. Öztürk, A., Doğan, M., Düzgün, İ, Çelebi, S.: The effect of Dy doping on the magnetic behavior of YBCO superconductors. J. Supercond. Nov. Magn. 29, 1787–1791 (2016). https://doi.org/10.1007/s10948-016-3493-3

    Article  Google Scholar 

  23. Gokhfeld, D.M., Balaev, D.A., Yakimov, I.S., Petrov, M.I., Semenov, S.V.: Tuning the peak effect in the Y1−xNdxBa2Cu3O7−δ compound. Ceram. Int. 43, 9985–9991 (2017). https://doi.org/10.1016/J.CERAMINT.2017.05.011

    Article  Google Scholar 

  24. Zhang, S., Xu, S., Fan, Z., Jiang, P., Han, Z., Yang, G., Chen, Y.: Broad temperature study of RE-substitution effects on the in-field critical current behavior of REBCO superconducting tapes. Supercond. Sci. Technol. 31, 125006 (2018). https://doi.org/10.1088/1361-6668/AAE460

    Article  ADS  Google Scholar 

  25. Gokhfeld, D.M., Semenov, S.V., Terentyev, K.Y., Yakimov, I.S., Balaev, D.A.: Interplay of magnetic and superconducting subsystems in Ho-doped YBCO. J. Supercond. Nov. Magn. 34, 2537–2543 (2021). https://doi.org/10.1007/S10948-021-05954-3/FIGURES/7

    Article  Google Scholar 

  26. Senoussi, S., Sastry, P.V.S.S., Yakhmi, J.V., Campbell, I.A.: Magnetic hysteresis of superconducting GdBa2Cu3O7 down to 1.8 K. Le J. Phys. Colloq. 49, C8–2163-C8–2164 (1988). https://doi.org/10.1051/jphyscol:19888969

  27. Singh, K., Hermes, W., Kaushik, S.D., Balamurugan, S., Bhattacharya, S., Gaur, N.K., Rayaprol, S., Pöttgen, R.: Superconductivity and magnetism in R 2CaBa2Cu5O z (R=La, Pr, Nd and Eu). J. Supercond. Nov. Magn. 22(8), 759–767 (2009). https://doi.org/10.1007/S10948-009-0493-6

  28. Gokhfeld, D.M., Semenov, S.V., Balaev, D.A., Yakimov, I.S., Dubrovskiy, A.A., Terentyev, K.Y., Freydman, A.L., Krasikov, A.A., Petrov, M.I.: Establishing of peak effect in YBCO by Nd substitution. J. Magn. Magn. Mater. 440, 127–128 (2017). https://doi.org/10.1016/j.jmmm.2016.12.089

    Article  ADS  Google Scholar 

  29. Altin, E., Gokhfeld, D.M., Demirel, S., Oz, E., Kurt, F., Altin, S., Yakinci, M.E.: Vortex pinning and magnetic peak effect in Eu(Eu,Ba)2.125Cu3Ox. J. Mater. Sci. Mater. Electron. 25, 1466–1473 (2014). https://doi.org/10.1007/s10854-014-1753-1

  30. Altin, E., Gokhfeld, D.M., Kurt, F., Yakinci, Z.D.: Physical, electrical, transport and magnetic properties of Nd(Ba,Nd)2.1Cu3O7−δ system. J. Mater. Sci. Mater. Electron. 24, 5075–5084 (2013). https://doi.org/10.1007/s10854-013-1526-2

  31. Hyun, O.B., Hirabayashi, I.: Effects of local moments on the magnetization of HoBa2Cu3O7. Phys. Rev. B. 50, 16023–16027 (1994). https://doi.org/10.1103/PhysRevB.50.16023

    Article  ADS  Google Scholar 

  32. Li, Y., Perkins, G.K., Caplin, A.D., Cao, G., Ma, Q., Wei, L., Zhao, Z.X.: Study of the pinning behaviour in yttrium-doped Eu-123 superconductors. Supercond. Sci. Technol. 13, 1029–1034 (2000). https://doi.org/10.1088/0953-2048/13/7/321

    Article  ADS  Google Scholar 

  33. Gokhfeld, D.M.: The circulation radius and critical current density in type II superconductors. Tech. Phys. Lett. 45, 1–3 (2019). https://doi.org/10.1134/S1063785019010243

    Article  ADS  Google Scholar 

  34. Matsushita, T., Otabe, E.S., Wada, H., Takahama, Y., Yamauchi, H.: Size dependencies of the peak effect and irreversibility field in superconducting Sm-123 powders. Phys. C Supercond. 397, 38–46 (2003). https://doi.org/10.1016/S0921-4534(03)01085-2

    Article  ADS  Google Scholar 

  35. Barnes, P.N., Kell, J.W., Harrison, B.C., Haugan, T.J., Varanasi, C.V., Rane, M., Ramos, F.: Minute doping with deleterious rare earths in YBa2Cu3O7−δ films for flux pinning enhancements. Appl. Phys. Lett. 89, 012503 (2006). https://doi.org/10.1063/1.2219391

    Article  ADS  Google Scholar 

  36. Petrov, M.I., Balaev, D.A., Gokhfel’d, Y.S., Dubrovskiǐ, A.A., Sha’khutdinov, K.A.: Effect of heterovalent substitution of rare-earth elements on the magnetic and transport properties of YBa2Cu3O7. Phys. Solid State. 49, 2047–2051 (2007). https://doi.org/10.1134/S1063783407110054

  37. Petrov, M.I., Balaev, D.A., Gokhfeld, Y.S., Dubrovskiy, A.A., Shaykhutdinov, K.A.: Enhancement of pinning in cerium doped Y(1–x)CexBa2Cu3O7 HTSC. Phys. C Supercond. 460–462, 1192–1193 (2007). https://doi.org/10.1016/J.PHYSC.2007.04.046

    Article  ADS  Google Scholar 

  38. Gokhfeld, D.: Use of a sigmoid function to describe second peak in magnetization loops. (2017)

  39. Benzi, P., Bottizzo, E., Rizzi, N.: Oxygen determination from cell dimensions in YBCO superconductors. J. Cryst. Growth. 269, 625–629 (2004). https://doi.org/10.1016/J.JCRYSGRO.2004.05.082

    Article  ADS  Google Scholar 

  40. Sandu, V., Popa, S., Di Gioacchino, D., Tripodi, P.: Paramagnetism and superconductivity in Eu 0.7Sm 0.3Ba 2Cu 3O 7-δ. J. Supercond. Nov. Magn. 17, 701–710 (2004). https://doi.org/10.1007/s10948-004-0830-8

  41. Mamsurova, L.G., Trusevich, N.G., Pigalskiy, K.S., Vishnev, A.A., Gadzhimagomedov, S.K., Murlieva, Z.K., Palchaev, D.K., Bugaev, A.S.: Magnetization and static magnetic susceptibility of fine-crystalline high-temperature YBa2Cu3Oy superconductors synthesized by the sol–gel method. Russ. J. Phys. Chem. B. 12, 908–915 (2018). https://doi.org/10.1134/S1990793118050081

    Article  Google Scholar 

  42. Bourges, P., Sidis, Y., Fong, H.F., Regnault, L.P., Bossy, J., Ivanov, A., Keimer, B.: The spin excitation spectrum in superconducting YBa2Cu3O6.85. Science (80-. ). 288, 1234–1237 (2000). https://doi.org/10.1126/science.288.5469.1234

  43. Gokhfeld, D.M.: Secondary peak on asymmetric magnetization loop of type-II superconductors. J. Supercond. Nov. Magn. 26, 281–283 (2013). https://doi.org/10.1007/s10948-012-1741-8

    Article  Google Scholar 

  44. Gokhfeld, D.: Use of a sigmoid function to describe second peak in magnetization loops. J. Supercond. Nov. Magn. 31, 1785–1789 (2018). https://doi.org/10.1007/s10948-017-4400-2

    Article  Google Scholar 

  45. Koshelev, A.E., Vinokur, V.M.: Pinning-induced transition to disordered vortex phase in layered superconductors. Phys. Rev. B. 57, 8026–8033 (1998). https://doi.org/10.1103/PhysRevB.57.8026

    Article  ADS  Google Scholar 

  46. Babich, I.M., Brandt, E.H., Mikitik, G.P., Zeldov, E.: Critical current in type-II superconductors near the order-disorder transition. Phys. Rev. B. 81, 054517 (2010). https://doi.org/10.1103/PhysRevB.81.054517

    Article  ADS  Google Scholar 

  47. Ionescu, A.M., Miu, D., Crisan, A., Miu, L.: Pinning-induced vortex-system disordering at the origin of the second magnetization peak in superconducting single crystals. J. Supercond. Nov. Magn. 1–9 (2017). https://doi.org/10.1007/s10948-017-4487-5

  48. Semenov, S.V., Gokhfel’d, D.M., Terent’ev, K.Y., Balaev, D.A.: Mechanisms of the magnetoresistance hysteresis in a granular HTS with the paramagnetic contribution by the example of HoBa2Cu3O7 – δ. Phys. Solid State. 63, 1785–1794 (2021). https://doi.org/10.1134/S1063783421100334/FIGURES/9

  49. Aǐnbinder, R.M., Vodolazov, D.Y., Maksimov, I.L.: Low-field peak effect in type II superconductors. Tech. Phys. 2005 507. 50, 954–956 (2013). https://doi.org/10.1134/1.1994981

  50. Maksimov, I.L., Ainbinder, R.M., Vodolazov, D.Y.: Anomalous peak-effect in type-II superconductors: a competition between bulk pinning and a surface barrier. Phys. C Supercond. Appl. 451, 127–133 (2007). https://doi.org/10.1016/J.PHYSC.2006.11.005

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Yu.S. Gokhfeld, K.Yu. Terentyev, and M.I. Petrov for assistance in the sample preparation. SEM and magnetic measurements were carried out at the Krasnoyarsk Regional Center of Research Equipment, Federal Research Center “Krasnoyarsk Science Center SB RAS.”

Funding

This work was supported by the Russian Foundation for Basic Research and the Government of the Krasnoyarsk Territory, Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, project “Superconducting properties of YBCO incorporated by paramagnetic rare-earth elements” No. 20–42-240008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Gokhfeld.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokhfeld, D.M., Semenov, S.V., Nemtsev, I.V. et al. Magnetic Ion Substitution and Peak Effect in YBCO: the Strange Case of Y1–xGdxBa2Cu3O7–δ. J Supercond Nov Magn 35, 2679–2687 (2022). https://doi.org/10.1007/s10948-022-06317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06317-2

Keywords

Navigation