Skip to main content
Log in

Structure and Lattice Dynamics of R\(_2\)Sn\(_2\)O\(_7\) and R\(_2\)Zr\(_2\)O\(_7\) (R = La–Lu) Crystals: Ab Initio Calculation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Crystal structure and phonon spectrum of rare-earth stannates R\(_2\)Sn\(_2\)O\(_7\) and zirconates R\(_2\)Zr\(_2\)O\(_7\) (R = La–Lu) with the pyrochlore structure were studied within the framework of DFT and MO LCAO approach. The calculations were performed by using hybrid functional PBE0 that take into account nonlocal exchange at the Hartree-Fock formalism. The calculation of the phonon spectrum at the \(\Gamma\)-point made it possible to supplement the available experimental data on the IR and Raman spectra of stannates and zirconates. In the framework of the ab initio approach, the change of the elastic properties of zirconium oxide t-ZrO\(_2\) by doping the yttrium was studied. Calculations were performed in the CRYSTAL17 program designed to simulate periodic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Srivastava, A.M.: Chemical bonding and crystal field splitting of the Eu3+ 7F1 level in the pyrochlores Ln2B2O7 (Ln = La3+, Gd3+, Y3+, Lu3+; B = Sn4+, Ti4+). Opt. Mater. 31, 881–885 (2009). https://doi.org/10.1016/j.optmat.2008.10.021

  2. Cao, R., Quan, G., Shi, Z., Chen, T., Luo, Z., Zheng, G., Hu, Z.: Synthesis and luminescence properties of La2Z2r2O7:R (R = Sm3+, Bi3+, Sm3+/Bi3+) phosphor. J. Phys. Chem. Solids 118, 109–113 (2018). https://doi.org/10.1016/j.jpcs.2018.03.002

  3. Jina, D., Yu, X., Yang, H., Zhu, H., Wang, L., Zheng, Y.: Hydrothermal synthesis and luminescence properties of Yb3+ doped rare earth stannates. J. Alloys Compd. 118, 109-113 (2009). https://doi.org/10.1016/j.jallcom.2008.06.159

  4. Li, K.W., Li, H., Zhang, H., Yu, R., Wang, H., Yan, H.: Hydrothermal synthesis of Eu3+-doped Y2Sn2O7 nanocrystals. Mater. Res. Bull. 41, 191–197 (2006). https://doi.org/10.1016/j.materresbull.2005.07.018

  5. Zhang, A., Lü, M., Zhou, G., Wang, S., Zhou, Y.: Combustion synthesis and photoluminescence of Eu3+, Dy3+-doped La2Zr2O7 nanocrystals. J. Phys. Chem. Solids 67, 2430 (2006). https://doi.org/10.1016/j.jpcs.2006.05.004

  6. Liu, R., Dong, X., Wang, J., Yu, W., Liu, G.: Preparation, characterization and luminescence properties of pyrochlore La\(_2\)Zr\(_2\)O\(_7\):Eu\(^{3+}\) nanofibers by electrospinning. J. Optoelectron. Adv. Mater. 16, 542 (2014). https://joam.inoe.ro/articles/preparation-characterization-and-luminescence-properties-of-pyrochlore-la2zr2o7eu3-nanofibers-by-electrospinning/fulltext

  7. W. E. Klee, G. Weitz, Infrared spectra of ordered and disordered pyrochlore-typecompounds in the series RE2Ti2O7, RE2Zr2O7 and RE2Hf2O7. J. Inorg. Nucl. Chem. 31, 2367 (1969)

    Article  Google Scholar 

  8. Denisova, L.T., Kargin, Y.F., Denisov, V.M.: Heat capacity of rare-earth stannates in the range 350–1000 K. Inorg Mater. 53, 956 (2017). https://doi.org/10.1134/S0020168517090059

  9. Subramanian, M., Aravamudan, G., Subba Rao, G.: Oxide pyrochlores – a review. Prog. Solid State Chem. 15, 55 (1983). https://doi.org/10.1016/0079-6786(83)90001-8

  10. Xu, J., Anand, V.K., Bera, A.K., Frontzek, M., Abernathy, D.L., Casati, N., Siemensmeyer, K., Lake, B.: Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd\(_2\)Zr\(_2\)O\(_7\). Phys. Rev. B 92, 224430 (2015). https://doi.org/10.1103/PhysRevB.92.224430

  11. Vandenborre, M.T., Husson, E., Chatry, J.P., Michel, D.: Rare–earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields. J. Raman Spectrosc. 14, 63 (1983). https://doi.org/10.1002/jrs.1250140202

  12. Turner, K.M., Tracy, C.L., Mao, W.L., Ewing, R.C.: Lanthanide stannate pyrochlores (Ln\(_2\)Sn\(_2\)O\(_7\); Ln= Nd, Gd, Er) at high pressure. J. Phys. Condens. Matter. 29, 504005 (2017). https://doi.org/10.1088/1361-648X/aa9960

  13. Denisova, L.T., Irtyugo, L.A., Kargin, Y.F., Denisov, V.M., Beletskii, V.V., Shubin, A.A.: High-temperature heat capacity and vibrational spectra of Eu\(_2\)Sn\(_2\)O\(_7\). Inorg. Mater. 52, 811 (2016). https://doi.org/10.1134/S0020168516080057

  14. Shimamura, K., Arima, T., Idemitsu, K., Inagaki, Y.: Thermophysical properties of rareearth-stabilized zirconia and zirconate pyrochlores as surrogates for actinide-doped zirconia. Int. J. Thermophys. 28, 1074 (2007). https://doi.org/10.1007/s10765-007-0232-9

  15. Rittman, D.R., Turner, K.M., Park, S., Fuentes, A.F., Park, C., Ewing, R.C., Mao, W.L.: Strain engineered pyrochlore at high pressure. Sci. Rep. 7, 2236 (2017). https://doi.org/10.1038/s41598-017-02637-9

  16. Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996). https://doi.org/10.1063/1.472933

  17. Medvedev, M.G., Bushmarinov, I.S., Sun, J., Perdew, J.P., Lyssenko, K.A.: Density functional theory is straying from the path toward the exact functional. Science 355, 49 (2017). https://www.science.org/doi/10.1126/science.aah5975

  18. Dovesi, R., Saunders, V.R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., D’Arco, Ph., Llunel, M., Causa, M., Noel, Y., Maschio, L., Erba, A., Rerat, M., Casassa, S.: Crystal17 User’s Manual, (Accessed 25 April 2022). https://www.crystal.unito.it/Manuals/crystal17.pdf

  19. CRYSTAL17: A Computational Tool for Solid State Chemistry and Physics (Accessed 25 April 2022). http://www.crystal.unito.it/index.php

  20. Dolg, M., Stoll, H., Savin, A., Preuss, H.: Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta 75, 173 (1989). https://doi.org/10.1007/BF00528565

  21. Dolg, M., Stoll, H., Preuss, H.: A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds, Theor. Chim. Acta 85, 441 (1993). https://doi.org/10.1007/BF01112983

  22. Yang,J., Dolg, M.: Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations. Theor. Chem. Accounts 113, 212 (2005). https://doi.org/10.1007/s00214-005-0629-0

  23. Weigand, A., Cao, X., Yang, J., Dolg, M.: Quasirelativistic f-in-core pseudopotentials and core-polarization potentials for trivalent actinides and lanthanides: molecular test for trifluorides. Theor. Chem. Accounts 126, 117 (2010). https://doi.org/10.1007/s00214-009-0584-2

  24. Energy-Consistent Pseudopotentials of the Stuttgart/Cologne Group (Accessed 25 April 2022). http://www.tc.uni-koeln.de/PP/clickpse.en.html

  25. Cora, F.: The performance of hybrid density functionals in solid state chemistry: the case of BaTiO\(_3\). Mol. Phys. 103, 2483 (2005). https://doi.org/10.1080/00268970500179651

  26. Peintinger, M.F., Oliveira, D.V., Bredow, T.: Consistent Gaussian basis sets of triple zetavalence with polarization quality for solid state calculations. J. Comp. Chem. (2012). https://doi.org/10.1002/jcc.23153

  27. Sophia, G., Baranek, P., Sarrazin, C., Rerat, M., Dovesi, R.: Tin Basis-Sets. http://www.crystal.unito.it/Basis_Sets/tin.html

  28. Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M., Jakobsen, S., Lillerud, K.P., Lamberti, C.: Disclosing the complex structure of UiO-66 MOF: a synergic combination of experiment and theory. Chem. Mater. 23, 1700 (2011). https://doi.org/10.1021/cm1022882

  29. Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C.M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., de la Pierre, P., d’Arco, M., Noel, Y., Causa, M., Rerat, M., Kirtman, B.: CRYSTAL14: A program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem. 114, 1287 (2014). https://doi.org/10.1002/qua.24658

  30. Labeguerie, P., Pascale, F., Merawa, M., Zicovich-Wilson, C., Makhouki, N., Dovesi, R.: Phonon vibrational frequencies and elastic properties of solid SrFCl. An ab initio study, Eur. Phys. J. B, 43, 453 (2005). https://doi.org/10.1140/epjb/e2005-00078-6

  31. Tian, Y., Xu, B., Zhao, Z.: Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33 93 (2012). https://doi.org/10.1016/j.ijrmhm.2012.02.021

  32. Korabel’nikov, D.V., Zhuravlev, Y.N.: Ab initio investigations of the elastic properties of chlorates and perchlorates. Phys. Solid State 58, 1166 (2016). https://doi.org/10.1134/S1063783416060251

  33. Feng, J., Xiao, B., Qu, Z.X., Zhou, R., Pan, W.: Mechanical properties of rare earth stannate pyrochlores. Appl. Phys. Lett. 99, 201909 (2011). https://doi.org/10.1063/1.3659482

  34. Sophia, G., Baranek, P., Sarrazin, C., Rerat, M., Dovesi, R.: First-principles study of the mechanisms of the pressure-induced dielectric anomalies in ferroelectric perovskites. Phase Transitions: A Multinational Journal 81, 1069 (2013). https://doi.org/10.1080/01411594.2012.754442

  35. Towler, M.D., Allan, N.L., Harrison, N.M., Saunders, V.R., Mackrodt, W.C., Apra, E.: An ab initio Hartree-Fock study of MnO and NiO. Phys. Rev. B 50, 5041 (1994). https://doi.org/10.1103/PhysRevB.50.5041

  36. Buljan, A., Alemany, P., Ruiz, E.: Electronic Structure and Bonding in CuMO\(_2\) (M = Al, Ga, Y) Delafossite-Type Oxides: An Ab Initio Study. J. Phys. Chem. B 103, 8060 (1999). https://doi.org/10.1021/jp984420a

  37. Torres, F.J., Amigó, J.M., Alarcón, J.: X-ray powder diffraction study of monoclinic V\(^{4+}\)-ZrO\(_2\) solid solutions obtained from gels. J. Solid State Chem. 173, 40 (2003). https://doi.org/10.1016/S0022-4596(03)00075-6

  38. Khitrova, V.I., Klechkovskaya, V.V.: Electron diffraction study of phase formation and crystal structure of cubic zirconium oxide in thin layers. Kristallografiya 30, 126 (1985)

    Google Scholar 

  39. Bouvier, P., Djurado, E., Ritter, C., Dianoux, A.J., Lucazeau, G.: Low temperature phase transformation of nanocrystalline tetragonal ZrO\(_2\) by neutron and Raman scattering studies, International Journal of Inorganic Materials, 3 (2001) 647. https://doi.org/10.1016/S1466-6049(01)00196-9

  40. French, R.H., Glass, S.J., Ohuchi, F.S., Xu, Y.-N., Ching, W.Y.: Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO\(_2\). Phys. Rev. B 49, 5133 (1994). https://doi.org/10.1103/PhysRevB.49.5133

  41. Ranganathan, S.I., Ostoja-Starzewski, M.: Universal Elastic Anisotropy Index. Phys. Rev. Lett. 101, 055504 (2008). https://doi.org/10.1103/PhysRevLett.101.055504

Download references

Acknowledgements

This study was performed using the Uran supercomputer at the N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2020-0054) by the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Quantum” No. 122021000038-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Agzamova.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshev, V.A., Glukhov, K.I. & Agzamova, P.A. Structure and Lattice Dynamics of R\(_2\)Sn\(_2\)O\(_7\) and R\(_2\)Zr\(_2\)O\(_7\) (R = La–Lu) Crystals: Ab Initio Calculation. J Supercond Nov Magn 35, 2231–2239 (2022). https://doi.org/10.1007/s10948-022-06316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06316-3

Keywords

PACS

Mathematics Subject Classification (2000)

Navigation