Skip to main content
Log in

Fluctuating local field approach to the description of lattice models in the strong coupling regime

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We consider 2D Hubbard clusters magnetism in the strong coupling regime. We show that the mean field approach does not provide sufficient results. Acting in assumption that the origin of unphysical predictions is the lack of local moment fluctuations, we develop the recently introduced Fluctuating Local Field scheme in the vicinity of atomic limit. Our numerical calculations show significant qualitative improvement of the results obtained within the mean field approach. We supply the discussion of the results with the perspectives for future quantitative improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bednorz, J.G., Müller, K.A.: Zeitschrift für Physik B Condensed Matter 64(2), 189 (1986). https://doi.org/10.1007/BF01303701https://link.springer.com/article/10.1007/BF01303701

  2. Mackenzie, A.P., Maeno, Y.: Rev. Mod. Phys. 75, 657 (2003). https://doi.org/10.1103/RevModPhys.75.657https://link.aps.org/doi/10.1103/RevModPhys.75.657

  3. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130(11), 3296 (2008). https://doi.org/10.1021/ja800073m, https://pubs.acs.org/doi/10.1021/ja800073m

  4. Lee, P.A., Nagaosa, N., Wen, X.G.: Rev. Mod. Phys. 78, 17 (2006). https://doi.org/10.1103/RevModPhys.78.17, https://link.aps.org/doi/10.1103/RevModPhys.78.17

  5. Bakr, W.S., Gillen, J.I., Peng, A., Fölling, S., Greiner, M.: Nature 462(7269), 74 (2009). https://doi.org/10.1038/nature08482, https://www.nature.com/articles/nature08482

  6. Mazurenko, A., Chiu, C.S., Ji, G., Parsons, M.F., Kanász-Nagy, M., Schmidt, R., Grusdt, F., Demler, E., Greif, D., Greiner, M.: Nature 545(7655), 462 (2017). https://doi.org/10.1038/nature22362, https://www.nature.com/articles/nature22362

  7. Yankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K., Taniguchi, T., Graf, D., Young, A.F., Dean, C.R.: Science 363(6431), 1059 (2019). https://doi.org/10.1126/science.aav1910, https://www.science.org/doi/abs/10.1126/science.aav1910

  8. Hubbard, J.: Proc. R. Soc. Lond. A 276(1365), 238 (1963). https://doi.org/10.1098/rspa.1963.0204, https://royalsocietypublishing.org/doi/10.1098/rspa.1963.0204

  9. Hubbard, J.: Proc. R. Soc. Lond. A 277(1369), 237 (1964). https://doi.org/10.1098/rspa.1964.0019, https://royalsocietypublishing.org/doi/10.1098/rspa.1964.0019

  10. Hubbard, J.: Proc. R. Soc. Lond. A 281(1386), 401 (1964). https://doi.org/10.1098/rspa.1964.0190, https://royalsocietypublishing.org/doi/10.1098/rspa.1964.0190

  11. Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L., Esslinger, T.: Science 340(6138), 1307 (2013). https://doi.org/10.1126/science.1236362, https://science.sciencemag.org/content/340/6138/1307

  12. Hart, R.A., Duarte, P.M., Yang, T.L., Liu, X., Paiva, T., Khatami, E., Scalettar, R.T., Trivedi, N., Huse, D.A., Hulet, R.G.: Nature 519, 211–214 (2015). https://doi.org/10.1038/nature14223, https://www.nature.com/articles/nature14223

  13. Coronado, E.: Nat. Rev. Mater. 5(2), 87 (2020). https://doi.org/10.1038/s41578-019-0146-8, https://www.nature.com/articles/s41578-019-0146-8

  14. Blanc, N., Trinh, J., Dong, L., Bai, X., Aczel, A.A., Mourigal, M., Balents, L., Siegrist, T., Ramirez, A.P.: Nature Phys 14, 273–276 (2018). https://doi.org/10.1038/s41567-017-0010-y, https://www.nature.com/articles/s41567-017-0010-y

  15. Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Rev. Mod. Phys. 68, 13 (1996). https://doi.org/10.1103/RevModPhys.68.13, https://link.aps.org/doi/10.1103/RevModPhys.68.13

  16. Maier, T., Jarrell, M., Pruschke, T., Hettler, M.H.: Rev. Mod. Phys. 77, 1027 (2005). https://doi.org/10.1103/RevModPhys.77.1027, https://link.aps.org/doi/10.1103/RevModPhys.77.1027

  17. Kotliar, G., Savrasov, S.Y., Pálsson, G., Biroli, G.: Phys. Rev. Lett. 87, 186401 (2001). https://doi.org/10.1103/PhysRevLett.87.186401, https://link.aps.org/doi/10.1103/PhysRevLett.87.186401

  18. Sun, P., Kotliar, G.: Phys. Rev. B 66, 085120 (2002). https://doi.org/10.1103/PhysRevB.66.085120, https://link.aps.org/doi/10.1103/PhysRevB.66.085120

  19. Ayral, T., Werner, P., Biermann, S.: Phys. Rev. Lett. 109, 226401 (2012). https://doi.org/10.1103/PhysRevLett.109.226401, https://link.aps.org/doi/10.1103/PhysRevLett.109.226401

  20. Rubtsov, A.N., Katsnelson, M.I., Lichtenstein, A.I.: Phys. Rev. B 77, 033101 (2008). https://doi.org/10.1103/PhysRevB.77.033101, https://link.aps.org/doi/10.1103/PhysRevB.77.033101

  21. Rubtsov, A.N.: Phys. Rev. E 97, 052120 (2018). https://doi.org/10.1103/PhysRevE.97.052120, https://link.aps.org/doi/10.1103/PhysRevE.97.052120

  22. Lyakhova, Y.S., Stepanov, E.A., Rubtsov, A.N.: Phys. Rev. B 105, 035118 (2022). https://doi.org/10.1103/PhysRevB.105.035118, https://link.aps.org/doi/10.1103/PhysRevB.105.035118

  23. Rubtsov, A.N., Stepanov, E.A., Lichtenstein, A.I.: Phys. Rev. B 102, 224423 (2020). https://doi.org/10.1103/PhysRevB.102.224423, https://link.aps.org/doi/10.1103/PhysRevB.102.224423

  24. Landau, L., Lifshitz, E.: Statistical Physics, Part I. Elsevier, Amsterdam (2011)

    Google Scholar 

Download references

Acknowledgements

The work of Ya.S.L. was supported by the MEPhI Program Priority 2030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana S. Lyakhova.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyakhova, Y.S., Rubtsov, A.N. Fluctuating local field approach to the description of lattice models in the strong coupling regime. J Supercond Nov Magn 35, 2169–2173 (2022). https://doi.org/10.1007/s10948-022-06303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06303-8

Keywords

PACS:

Navigation