Skip to main content
Log in

Influence of Wire Length and Alternating Current Amplitude on the Tension-Stress-Impedance Effect of FeCoNiBSiMo Microwires

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the influences of wire length and alternating current (AC) amplitude on the tension-stress-impedance effect of FeCoNiBSiMo microwires. In this paper, the resistance, inductance, and impedance of FeCoNiBSiMo microwires under different conditions were measured; the resistance ratio, the inductance ratio, and the impedance ratio were calculated, then the resistance ratio, inductance ratio, and impedance ratio were linearly fitted to the wire length and the alternating current amplitude, respectively. The results showed that the tension-stress-impedance effect in soft magnetic microwires was enhanced with the decrease in the wire length. The impedance ratio reached a maximum of 11%, when an alternating current of 26 MHz was applied to the soft magnetic microwire with a wire length of 1.5 cm. The tension-stress-impedance effect in the same soft magnetic microwires was enhanced with the increase of the amplitude of the applied alternating current. The impedance ratio reached a maximum of 9%, when an alternating current with an amplitude of 25 mA and a frequency of 20 MHz  was applied. Both linear fitting results showed high linearity, and the highest coefficient of determination was 0.9937.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luo, Z., Tang, Z., Jiang, L., Ma, G.: A referenceless image degradation perception method based on the underwater imaging model. Appl. Intell. 1–17 (2021)

  2. Cardoso, S., Leitao, D.C., Dias, T.M., Valadeiro, J., Silva, M.D., Chicharo, A., Freitas, P.P.: Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications. J. Phys. D: Appl. Phys. 50(21), 213001 (2017)

    Article  ADS  Google Scholar 

  3. Tsukada, K., Hayashi, M., Nakamura, Y., Sakai, K., Kiwa, T.: Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures. IEEE Transact. Magn. 54(11), 1–5 (2018)

    Google Scholar 

  4. Olivera, J., González, M., Varga, R., Zhukov, A., Anaya, J.J.: An embedded stress sensor for concrete SHM based on amorphous ferromagnetic microwires. Sensors. 14(11), 19963–19978 (2014)

    Article  ADS  Google Scholar 

  5. Tomčíková, I., Bereš. M., Kováčová, I, et al.: Interaction between magnetic and stress field in ferromagnetic core of magnetoelastic pressure force sensor/2017 International Conference on Modern Electrical and Energy Systems (MEES). IEEE. 124–127 (2017)

  6. Kurlyandskaya, G.V., Shcherbinin, S.V., Volchkov, S.O., Bhagat, S.M., Calle, E., Pérez, R., Vazquez, M.: Soft magnetic materials for sensor applications in the high frequency range. J. Magn. Magn. Mater. 459, 154–158 (2018)

    Article  ADS  Google Scholar 

  7. Zhao, R.F., Ren, B., Zhang, G.P., Liu, Z.X., Cai, B., Zhang, J.J.: CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties. J. Magn. Magn. Mater. 491, 165574 (2019)

    Article  Google Scholar 

  8. Chen, C., Zhang, H., Fan, Y., Zhang, W., Wei, R., Wang, T., Li, F.: A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties. J. Magn. Magn. Mater. 502, 166513 (2020)

    Article  Google Scholar 

  9. Zuo, T., Zhang, M., Liaw, P.K., Zhang, Y.: Novel high entropy alloys of FexCo1-xNiMnGa with excellent soft magnetic properties. Intermetallics 100, 1–8 (2018)

    Article  Google Scholar 

  10. Shen, L.P., Uchiyama, T., Mohri, K., et al.: Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire. IEEE Trans. Magn. 33(3), 3355–3357 (1997)

    Article  ADS  Google Scholar 

  11. Froemel, J., Akita, S., Tanaka, S.: Simple device to measure pressure using the stress impedance effect of amorphous soft magnetic thin film. Micromachines. 11(7), 649 (2020)

    Article  Google Scholar 

  12. Zribi, A., Iorio, L.E., Lewis, D.J.: Oil-free stress impedance pressure sensor for harsh environment. In Sensors. 2005 IEEE (pp. 3-pp). IEEE (2005)

  13. Beato-López, J.J., Vargas-Silva, G., Pérez-Landazábal, J.I., Gómez-Polo, C.: Giant stress-impedance (GSI) sensor for diameter evaluation in cylindrical elements. Sens. Actuators, A 269, 269–275 (2018)

    Article  Google Scholar 

  14. Beato-López, J.J., Urdániz-Villanueva, J.G., Pérez-Landazábal, J.I., Gómez-Polo, C.: Giant stress impedance magnetoelastic sensors employing soft magnetic amorphous ribbons. Materials. 13(9), 2175 (2020)

    Article  Google Scholar 

  15. Bukreev, D.A., Derevyanko, M.S., Moiseev, A.A., Semirov, A.V., Savin, P.A., Kurlyandskaya, G.V.: Magnetoimpedance and stress-impedance effects in amorphous CoFeSiB ribbons at elevated temperatures. Materials. 13(14), 3216 (2020)

    Article  ADS  Google Scholar 

  16. Chen, Z., Li, D.R., Lu, Z.C., Zhou, S.X.: Giant stress-impedance effect in Co71. 8Fe4. 9Nb0. 8Si7. 5B15 glass-covered amorphous wires. J. Iron Steel Res. Int. 13(4), 49–50 (2006)

  17. Chiriac, H., Óvári, T.A.: Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog. Mater. Sci. 40(5), 333–407 (1996)

    Article  Google Scholar 

  18. Wang, T., Wang, B., Liu, S., Luo, Y., Li, H., Liu, M., Xie, S.: Large negative tension-impedance effect in a soft ferromagnetic microwire. EPL (Europhysics Letters). 131(6), 60002 (2020)

    Article  ADS  Google Scholar 

  19. Zhukova, V., Larin, V.S., Zhukov, A.: Stress induced magnetic anisotropy and giant magnetoimpedance in Fe-rich glass-coated magnetic microwires. J. Appl. Phys. 94(2), 1115–1118 (2003)

    Article  ADS  Google Scholar 

  20. Goodno, B.J., Gere, J.M.: (2020). Mechanics of materials. Cengage learning.

  21. Phan, M.H., Peng, H.X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53(2), 323–420 (2008)

    Article  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media. Pergamon. (1984)

  23. Knobel, M., Pirota, K.R.: Giant magnetoimpedance: concepts and recent progress. J. Magn. Magn. Mater. 242, 33–40 (2002)

    Article  ADS  Google Scholar 

  24. Tannous, C., Gieraltowski, J.: Giant magneto-impedance and its applications. J. Mater. Sci. Mater. Electron. 15(3), 125–133 (2004)

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Youth Natural Science Foundation (No.61703266), the National Natural Science Foundation of China (No.62073209), and the National Natural Science Foundation of China (No.52075315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, H. Influence of Wire Length and Alternating Current Amplitude on the Tension-Stress-Impedance Effect of FeCoNiBSiMo Microwires. J Supercond Nov Magn 35, 1375–1381 (2022). https://doi.org/10.1007/s10948-022-06299-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06299-1

Keywords

Navigation