Skip to main content
Log in

Structural, Microstructural, Infrared, and Mössbauer Spectroscopy Study of LuFeO3 Prepared by Solution Combustion Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, we investigate the electronic structural microstructure and spectroscopic characteristics of LuFeO3. Sample is prepared by the solution combustion method. X-ray diffraction patterns of LuFeO3 nanoparticles confirm the orthorhombic structure crystallite size found in nano range. X-ray photoelectron spectra were excited with a monochromatized AlK-line radiation. Absolute resolved energy interval was 0.6 eV, which was determined with the Ag3d5/2 line. The diameter of the X-ray spot on a sample was 500 mkm; it was small enough to study the samples obtained Mössbauer spectra of LuFeO3 were collected in the temperature range of 13–700 K. At 700 K, the spectra of both samples are paramagnetic doublets with similar parameters. At the lowest temperature (14 K), the spectra of both samples are magnetically split sextets. The isomer shift values of the sextets and doublets are typical for Fe3+ ions in oxygen octahedron. Morphology study and elemental analysis results reveal that the particle morphology and size is highly dependent on the reaction temperature, synthesis method, and fuel. Further, the active vibrational bands in these spectra correlate to the functional groups found in the examined system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, X., Song, H., Tan, C., Yang, S., Xue, Y., Wang, J., Zhong, X.: Epitaxial growth and magnetic properties of h-LuFeO3 thin films. J. Mater. Sci. 52, 13879–13885 (2017). https://doi.org/10.1007/s10853-017-1469-8

    Article  Google Scholar 

  2. Moyer, J.A., Misra, R., Mundy, J.A., Brooks, C.M., Heron, J.T., Muller, D.A., Schlom, D.G., Schiffer, P.: Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry. APL Mater. 2, 012106 (2014). https://doi.org/10.1063/1.4861795

    Article  ADS  Google Scholar 

  3. Holinsworth, B.S., Mazumdar, D., Brooks, C.M., Mundy, J.A., Das, H., Cherian, J.G., McGill, S.A., Fennie, C.J., Schlom, D.G., Musfeldt, J.L.: Direct band gaps in multiferroic h-LuFeO3. J. Appl. Phys. 111, 056105 (2012). https://doi.org/10.1063/1.3693588

    Article  Google Scholar 

  4. Wang, W., Zhao, J., Wang, W., et al.: Room-temperature multiferroic hexagonal LuFeO3 films. Phys. Rev. Lett. 110(23), 237601 (2013). https://doi.org/10.1103/PhysRevLett.110.237601

    Article  ADS  Google Scholar 

  5. Sinha, K., Zhang, Y., Jiang, X., et al.: Effects of biaxial strain on the improper multiferroicity in h-LuFeO3 films studied using the restrained thermal expansion method. Phys. Rev. B 95(9), 094110 (2017). https://doi.org/10.1103/PhysRevB.95.094110

    Article  ADS  Google Scholar 

  6. Lin, L., Zhang, H.M., Liu, M.F., Shen, S., Zhou, S., Li, D., Liu, J.M.: Hexagonal phase stabilization and magnetic orders of multiferroic Lu1-xScxFeO3, Phys. Rev. B. 93, 075146 (2016). https://doi.org/10.1103/PhysRevB.93.075146

  7. Coutinho, P.V., Cunha, F., Barrozo, P.: Structural, vibrational and magnetic properties of the orthoferrites LaFeO3 and YFeO3: a comparative study. Solid State Commun. 252, 59–63 (2017). https://doi.org/10.1016/j.ssc.2017.01.019

    Article  ADS  Google Scholar 

  8. Vandana, C.S., Rudramadevi, B.H.: Structural, magnetic and dielectric properties of cobalt doped GdFeO3 orthoferrites. Mater. Res. Express. 6, 126126 (2019). https://doi.org/10.1088/2053-1591/ab768f

  9. Singh, C.B., Kumar, D., Verma, N.K., Singh, A.K.: Structural, dielectric, semiconducting and optical properties of high-energy ball milled YFeO3 nano-particles. AIP Conf. Proc. 2115, 030619 (2019). https://doi.org/10.1063/1.5113458

    Article  Google Scholar 

  10. Vandana, C.S., Rudramadevi, B.H.: Structural, dielectric and AC conductivity properties of Ni-doped HoFeO3 before and after gamma irradiation. Appl. Phy. A. 116, 1327–1335 (2014). https://doi.org/10.1007/s00339-014-8228-3

  11. Practical surface analysis by Auger and X-ray photoelectron spectroscopy, ed. by D. Briggs and M. P. Seach, John Wiley & Sons, Chichester, p. 533 (1983)

  12. Yamashita, T., Hayes, P.: Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  ADS  Google Scholar 

  13. Kozakov, A.T., Kochur, A.G., Nikolsky, A.V., Googlev, K.A., Smotrakov, V.G., Eremkin, V.V.: X-ray photoelectron study of the valence state of iron in iron-containing single crystal (BiFeO3, PbFe1/2Nb1/2O3), and ceramic (BaFe1/2Nb1/2O3) multiferroics. J. Electron Spectrosc. Relat. Phenom. 184, 508–516 (2011). https://doi.org/10.1016/J.ELSPEC.2010.10.004

    Article  Google Scholar 

  14. Kozakov, A.T., Kochur, A.G., Nikolskii, A.V., Raevski, I.P., Kubrin, S.P., Raevskaya, S.I., Titov, V.V., Gusev, A.A., Isupov, V.P., Li, G., Zakharchenko, I.N.: Valence state of B and Ta cations in the AB1/2Ta1/2O3 ceramics (A = Ca, Sr, Ba, Pb; B = Fe, Sc) from X-ray photoelectron and M ̈ossbauer spectroscopy data. J. Electron Spectrosc. Relat. Phenom., 239(14), 146918 (2020). https://doi.org/10.1016/j.elspec.2019.146918

  15. Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Bomben Handbook of X-ray photoelectron spectroscopy ULVAC-PHI/physical electronics USA, Chigasaki, Japan/Minnesota, USA p. 107 (1995).

  16. Teterin, Yu.A., Yu Teterin, A.: Structure of X-ray photoelectron spectra of lanthanide compounds. Russ. Chem. Rev. 71(5), 347–381 (2002). https://doi.org/10.1070/RC2002v071n05ABEH000717

    Article  ADS  Google Scholar 

  17. Siegban, K., Nordling,  C., Fahlman,  A., Nordling,  R., Hamrin,  K., Hedman,  J., Johanson,  G., Berggmark,  T., Karlsson,  S.E., Lindgren,  I., Lindberg.  B.: ESCA, atomic, molecular and solid state structure studied by means of electron spectroscopy, Uppsala. in Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser.IV. (20), (1967).

  18. Matsnev, M.E., Rusakov, V.S.: SpectrRelax: an application for Mössbauer spectra modeling and fitting. AIP Conf. Proc. 1489, 178 (2012). https://doi.org/10.1063/1.4759488

  19. Eibschütz, M., Shtrikman, S., Trevest, D.: Mössbauer studies of 57Fe in orthoferrites. Phys. Rev. 156, 562–577 (1967)

    Article  ADS  Google Scholar 

  20. Yuan, X., Tang, Y., Sun, Y., Xu, M.: Structure and magnetic properties of Y1−xLuxFeO3 (0≤x≤1) ceramics. J. Appl. Phys. 111, 053911 (2012). https://doi.org/10.1063/1.3691243

    Article  ADS  Google Scholar 

  21. Greenwood, N.N., Gibb, T.C.: Mossbauer spectroscopy. Chapman and Hall, London (1971)

    Book  Google Scholar 

  22. Ramesh, J., Raju, N., Reddy, S.S.K., Reddy, M.S., Reddy, C.G., Reddy, P.Y., Reddy, K.R., Reddy, V.R.: 57Fe Mössbauer study of spin reorientation transition in polycrystalline NdFeO3. J. Alloys Compd. 711, 300–304 (2017). https://doi.org/10.1016/j.jallcom.2017.03.353

Download references

Acknowledgements

Dr. A. El-Denglawey is thankful to the Taif University Researchers Supporting Project Number (TURSP-2020/45) Taif University, Taif, Saudi Arabia. Kozakov A. T. and Nikolsky A. V. are grateful to the Southern Federal University for financial support (internal grant of SFU for the implementation of scientific research, Project No. VnGr-07/2020-01-IF).

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation [state task in the field of scientific activity, scientific project No. 0852–2020-0032 (BAS0110/20–3-08IF)].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. V. Jagadeesha Gowda, A. El-Denglawey or Jagadeesha Angadi V..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantharaj, K.S., Gowda, G.V.J., Ramprasad, N. et al. Structural, Microstructural, Infrared, and Mössbauer Spectroscopy Study of LuFeO3 Prepared by Solution Combustion Method. J Supercond Nov Magn 35, 2545–2553 (2022). https://doi.org/10.1007/s10948-022-06278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06278-6

Keywords

Navigation