Skip to main content
Log in

Frustrations on Decorated Planar Lattices in Ising Model

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We study the frustration properties of the Ising model on several decorated lattices with arbitrary numbers of decorating spins on all bonds of the lattice within an exact analytical approach based on the Kramers–Wannier transfer-matrix technique. The existence of magnetic frustrations in such situations and their influence on the behavior of the thermodynamic functions of systems is shown. The most important result of our study is related to the description of the possible coexistence of frustrations and long-range magnetic order in partially ordered spin systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kassan-Ogly, F.A., Filippov, B.N.: Frustrations in low-dimensional magnetic systems. Bull. Russ. Acad. Sci. Phys. 74, 1452–1454 (2010). https://doi.org/10.3103/S1062873810100394

    Article  Google Scholar 

  2. Balents, L.: Spin liquids in frustrated magnets. Nature 464, 199–208 (2010). https://doi.org/10.1038/nature08917

    Article  ADS  Google Scholar 

  3. Lacroix, C., Mendels, P., Mila, F. (eds.): Introduction to frustrated magnetism: Materials, experiments, theory. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-10589-0

  4. Kudasov, Y.B., Korshunov, A.S., Pavlov, V.N., Maslov, D.A.: Frustrated lattices of Ising chains. Phys. Usp. 55, 1169–1191 (2012). https://doi.org/10.3367/UFNe.0182.201212a.1249

    Article  ADS  Google Scholar 

  5. Diep, H.T. (ed.): Frustrated Spin Systems, 2nd edn. World Scientific, New Jersey (2013). https://doi.org/10.1142/8676

  6. Vasiliev, A.N., Volkova, O.S., Zvereva, E.A., Markina, M.M.: Low dimensional magnetism. Fizmatlit, Moscow (2018)

    Google Scholar 

  7. Markina, M.M., Berdonosov, P.S., Dolgikh, V.A., Zakharov, K.V., Kuznetsova, E.S., Vasil’ev, A.N.: Francisites as new geometrically frustrated quasi-two-dimensional magnets. Phys. Usp. 64, 344–356 (2021). https://doi.org/10.3367/UFNe.2020.05.038773

    Article  ADS  Google Scholar 

  8. Toulouse, G.: Theory of the frustration effect in spin glasses: I. Commun. Phys. 2, 115–119 (1977)

    Google Scholar 

  9. Wannier, G.H.: Antiferromagnetism. The Triangular Ising Net. Phys. Rev. 79, 357–364 (1950). https://doi.org/10.1103/PhysRev.79.357

    Article  MathSciNet  MATH  Google Scholar 

  10. Kanô, K., Naya, S.: Antiferromagnetism. The kagomé Ising net. Prog. Theor. Phys. 10, 158–172 (1953). https://doi.org/10.1143/PTP.10.158

  11. Matsuda, Y., Kasai, Y., Syozi, I.: Potts model of magnetic mixture in annealed system. Prog. Theor. Phys. 67, 131–138 (1982). https://doi.org/10.1143/PTP.67.131

    Article  ADS  Google Scholar 

  12. Qin, M.P., Chen, Q.N., Xie, Z.Y., Chen, J., Yu, J.F., Zhao, H.H., Normand, B., Xiang, T.: Partial long-range order in antiferromagnetic Potts models. Phys. Rev. B 90, 144424 (2014). doi: https://doi.org/10.1103/PhysRevB.90.144424

  13. Kotecký, R., Sokal, A.D., Swart, J.M.: Entropy-driven phase transition in low-temperature antiferromagnetic Potts models. Commun. Math. Phys. 330, 1339–1394 (2014). https://doi.org/10.1007/s00220-014-2005-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Farnell, D.J.J., Götze, O., Schulenburg, J., Zinke, R., Bishop, R.F., Li, P.H.Y.: Interplay between lattice topology, frustration, and spin quantum number in quantum antiferromagnets on Archimedean lattices. Phys. Rev. B 98, 224402 (2018). https://doi.org/10.1103/PhysRevB.98.224402

  15. Suttner, R., Platt, C., Reuther, J., Thomale, R.: Renormalization group analysis of competing quantum phases in the \({J}_{1}\)-\({J}_{2}\) Heisenberg model on the kagome lattice. Phys. Rev. B 89, 020408 (2014). https://doi.org/10.1103/PhysRevB.89.020408

  16. Hirose, Y., Oguchi, A., Tamura, M., Fukumoto, Y.: Novel constructive method for the quantum dimer model in spin-1/2 Heisenberg antiferromagnets with frustration on a diamond-like-decorated square lattice. AIP Adv. 8, 101413 (2018). https://doi.org/10.1063/1.5042717

  17. Natori, W.M.H., Nutakki, R., Pereira, R.G., Andrade, E.C.: SU4 Heisenberg model on the honeycomb lattice with exchange-frustrated perturbations: Implications for twistronics and Mott insulators. Phys. Rev. B 100, 205131 (2019). https://doi.org/10.1103/PhysRevB.100.205131

  18. Huang, Y.Y., Xu, Y., Wang, L., Zhao, C.C., Tu, C.P., Ni, J.M., Wang, L.S., Pan, B.L., Fu, Y., Hao, Z., Liu, C., Mei, J.W., Li, S.Y.: Heat transport in herbertsmithite: Can a quantum spin liquid survive disorder? Phys. Rev. Lett. 127, 267202 (2021). https://doi.org/10.1103/PhysRevLett.127.267202

  19. Yao, D.X., Loh, Y.L., Carlson, E.W., Ma, M.: \(XXZ\) and Ising spins on the triangular kagome lattice. Phys. Rev. B 78, 024428 (2008). https://doi.org/10.1103/PhysRevB.78.024428

  20. Nourse, H.L., McKenzie, R.H., Powell, B.J.: Spin-0 Mott insulator to metal to spin-1 Mott insulator transition in the single-orbital Hubbard model on the decorated honeycomb lattice. Phys. Rev. B 104, 075104 (2021). https://doi.org/10.1103/PhysRevB.104.075104

  21. Batista, C.D., Shastry, B.S.: Hubbard model on decorated lattices. Phys. Rev. Lett. 91, 116401 (2003)

  22. Coldea, R., Tennant, D.A., Tylczynski, Z.: Extended scattering continua characteristic of spin fractionalization in the two-dimensional frustrated quantum magnet Cs\(_{2}\)CuCl\(_{4}\) observed by neutron scattering. Phys. Rev. B 68, 134424 (2003)

  23. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M., Saito, G.: Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003). https://doi.org/10.1103/PhysRevLett.91.107001

  24. Norman, M.R.: Colloquium: Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016). https://doi.org/10.1103/RevModPhys.88.041002

  25. Syôzi, I.: Statistics of kagomé lattice. Prog. Theor. Phys. 6, 306–308 (1951). https://doi.org/10.1143/ptp/6.3.306

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Miyazima, S.: Three phase transitions of Ising model. Prog. Theor. Phys. 40, 462–470 (1968). https://doi.org/10.1143/PTP.40.462

    Article  ADS  Google Scholar 

  27. Syozi, I.: Transformation of Ising models. In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena. Vol. 1. Exact results, pp. 270–329. Academic Press, London (1972)

  28. Strečka, J., Dančo, M.: Unusual field-induced transitions in exactly solved mixed spin-(1/2, 1) Ising chain with axial and rhombic zero-field splitting parameters. Phys. B: Condens. Matter 406, 2967–2976 (2011). https://doi.org/10.1016/j.physb.2011.04.040

    Article  ADS  Google Scholar 

  29. Strečka, J., Jaščur, M., Hagiwara, M., Minami, K., Narumi, Y., Kindo, K.: Thermodynamic properties of a tetramer Ising-Heisenberg bond-alternating chain as a model system for Cu(3-Chloropyridine)\(_{2}\)(N\(_{3}\))\(_{2}\). Phys. Rev. B 72, 024459 (2005). https://doi.org/10.1103/PhysRevB.72.024459

  30. Torrico, J., Strečka, J., Hagiwara, M., Rojas, O., de Souza, S.M., Han, Y., Honda, Z., Lyra, M.L.: Heterobimetallic Dy-Cu coordination compound as a classical-quantum ferrimagnetic chain of regularly alternating Ising and Heisenberg spins. J. Magn. Magn. Mater. 460, 368–380 (2018). https://doi.org/10.1016/j.jmmm.2018.04.021

    Article  ADS  Google Scholar 

  31. Čanová, L., Strečka, J., Jaščur, M.: Exact solution of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chain. Condens. Matter Phys. 12, 353–368 (2009). https://doi.org/10.5488/CMP.12.3.353

    Article  Google Scholar 

  32. Takushima, Y., Koga, A., Kawakami, N.: Magnetic double structure for S = 1 and S = 1/2 mixed-spin systems. Phys. Rev. B 61, 15189–15195 (2000). https://doi.org/10.1103/PhysRevB.61.15189

    Article  ADS  Google Scholar 

  33. Oitmaa, J.: Ferrimagnetism and the existence of compensation points in layered mixed spin \((\frac{1}{2},1)\) Ising models. Phys. Rev. B 72, 224404 (2005). https://doi.org/10.1103/PhysRevB.72.224404

  34. Rojas, O., Valverde, J.S., de Souza, S.M.: Generalized transformation for decorated spin models. Phys. A 388, 1419–1430 (2009). https://doi.org/10.1016/j.physa.2008.12.063

    Article  MathSciNet  Google Scholar 

  35. Gálisová, L., Strečka, J., Tanaka, A., Verkholyak, T.: Effect of the on-site interaction on the magnetic properties of an exactly solvable spin-electron system. J. Phys.: Condens. Matter 23, 175602 (2011). https://doi.org/10.1088/0953-8984/23/17/175602

  36. Dakhama, A.: Exact solution of a decorated ferrimagnetic Ising model. Phys. A 252, 225–237 (1998). https://doi.org/10.1016/S0378-4371(97)00583-9

    Article  MathSciNet  Google Scholar 

  37. Jaščur, M.: Exact results for a decorated Ising model. Phys. A 252, 217–224 (1998). https://doi.org/10.1016/S0378-4371(97)00584-0

    Article  MathSciNet  Google Scholar 

  38. Montroll, E.W., Potts, R.B., Ward, J.C.: Correlations and spontaneous magnetization of the two-dimensional Ising model. J. Math. Phys. 4, 308–322 (1963). https://doi.org/10.1063/1.1703955

    Article  ADS  MathSciNet  Google Scholar 

  39. Baxter, R.J.: Onsager and Kaufman’s calculation of the spontaneous magnetization of the Ising model. J. Stat. Phys. 145, 518–548 (2011). https://doi.org/10.1007/s10955-011-0213-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Yang, C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808–816 (1952). https://doi.org/10.1103/PhysRev.85.808

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Potts, R.B.: Spontaneous magnetization of a triangular Ising lattice. Phys. Rev. 88, 352–352 (1952). https://doi.org/10.1103/PhysRev.88.352

  42. Syozi, I., Nakano, H.: Statistical models of ferrimagnetism. Prog. Theor. Phys. 13, 69–78 (1955). https://doi.org/10.1143/PTP.13.69

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Sommerfeld, A.: Thermodynamics and statistical mechanics. Academic Press, New York (1956)

    MATH  Google Scholar 

  44. Nolting, W.: Theoretical physics 8: Statistical physics. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73827-7

  45. Zarubin, A.V., Kassan-Ogly, F.A., Proshkin, A.I.: Frustrations in the Ising chain with the third-neighbor interactions. J. Magn. Magn. Mater. 514, 167144 (2020). https://doi.org/10.1016/j.jmmm.2020.167144

  46. Kassan-Ogly, F.A., Proshkin, A.I.: Ising model on planar decorated lattices. Frustrations and their influence on phase transitions. Phys. Metals Metallogr. 120, 1359–1365 (2019). https://doi.org/10.1134/S0031918X19130106

  47. Proshkin, A.I., Kassan-Ogly, F.A.: Frustration and phase transitions in Ising model on decorated square lattice. Phys. Metals Metallogr. 120, 1366–1372 (2019). https://doi.org/10.1134/S0031918X19130234

    Article  ADS  Google Scholar 

  48. Kassan-Ogly, F.A., Proshkin, A.I.: Frustrations and ordering in magnetic systems of various dimensions. Phys. Solid State 60, 1090–1097 (2018). https://doi.org/10.1134/S1063783418060136

    Article  ADS  Google Scholar 

  49. Zarubin, A.V., Kassan-Ogly, F.A., Proshkin, A.I., Shestakov, A.E.: The frustration properties of the one-dimensional Ising model. J. Exp. Theor. Phys. 128, 778–807 (2019). https://doi.org/10.1134/S106377611904006X

    Article  Google Scholar 

  50. Zarubin, A.V., Kassan-Ogly, F.A., Proshkin, A.I.: Frustrations and orderings in Ising chain with multiple interactions. J. Phys.: Conf. Ser. 1389, 012009 (2019). https://doi.org/10.1088/1742-6596/1389/1/012009

Download references

Acknowledgements

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Quantum” No. 122021000038-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zarubin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassan-Ogly, F.A., Zarubin, A.V. Frustrations on Decorated Planar Lattices in Ising Model. J Supercond Nov Magn 35, 1647–1656 (2022). https://doi.org/10.1007/s10948-022-06269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06269-7

Keywords

PACS

Navigation