Skip to main content
Log in

Emerging Majorana Zero Modes in Topologically Trivial Dirac Nodal Loop Semimetal Superconductors with Even Parity

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We reveal that the topologically nontrivial Dirac nodal loop semimetal will become topologically trivial in the superconducting state with the even parity. Interestingly, the Majorana zero modes can still be realized in this topologically trivial state. In the presence of a vortex line, a pair of Majorana zero modes emerge in the vortex core. The appearance/disappearance of the Majorana zero modes can be characterized by the \(Z_{2}\) topological invariant. Moreover, a vortex phase transition occurs upon changing the chemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sarma, S.D., Freedman, M., Nayak, C.: npj Quantum Information 1, 15001(2015)

  2. Aasen, D., Hell, M., Mishmash, R.V., Higginbotham, A., Danon, J., Leijnse, M., Jespersen, T.S., Folk, J.A., Marcus, C.M., Flensberg, K., Alicea, J.: Phys. Rev. X 6, 031016 (2016)

    Google Scholar 

  3. Kitaev, A.Y.: Ann. Phys. 303, 2–30 (1997)

    Article  ADS  Google Scholar 

  4. Freedman, M.H.: Proceedings of the National Academy of Sciences. 95, 98–101 (1998)

    Article  ADS  Google Scholar 

  5. Beenakker, C.: Annual Review of Condensed Matter Physics 4, 113–136 (2013)

    Article  ADS  Google Scholar 

  6. Alicea, J.: Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  7. Fu, L., Kane, C.L.: Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  8. Read, N., Green, D.: Phys. Rev. B 61, 10267–10297 (2000)

    Article  ADS  Google Scholar 

  9. Lutchyn, R.M., Sau, J.D., Sarma, S.D.: Phys. Rev. Lett. 105, 077001 (2010)

    Article  ADS  Google Scholar 

  10. Alicea, J.: Phys. Rev. B 81, 125318 (2010)

    Article  ADS  Google Scholar 

  11. Sau, J.D., Lutchyn, R.M., Tewari, S., Sarma, S.D.: Phys. Rev. Lett. 104, 040502 (2010)

    Article  ADS  Google Scholar 

  12. Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Science 336, 1003–1007 (2012)

    Article  ADS  Google Scholar 

  13. Rokhinson, L.P., Liu, X., Furdyna, J.K.: Nat. Phys. 8, 795–799 (2012)

    Article  Google Scholar 

  14. Deng, M.T., Yu, C.L., Huang, G.Y., Larsson, M., Caroff, P., Xu, H.Q.: Nano Lett. 12, 6414–6419 (2012)

    Article  ADS  Google Scholar 

  15. Churchill, H.O.H., Fatemi, V., Grove-Rasmussen, K., Deng, M.T., Caroff, P., Xu, H.Q., Marcus, C.M.: Phys. Rev. B 87, 241401 (2013)

    Article  ADS  Google Scholar 

  16. Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H.: Nat. Phys. 8, 887–895 (2012)

    Article  Google Scholar 

  17. Zhang, P., Yaji, K., Hashimoto, T., Ota, Y., Kondo, T., Okazaki, K., Wang, Z., Wen, J., Gu, G.D., Ding, H., Shin, S.: Science 360, 182–186 (2018)

    Article  ADS  Google Scholar 

  18. Yan, Z., Bi, R., Wang, Z.: Phys. Rev. Lett. 118, 147003 (2017)

    Article  ADS  Google Scholar 

  19. Tsui, L., Li, Z.-X., Huang, Y.-T., Louie, S.G., Lee, D.-H.: Science Bulletin 64, 575–579 (2019)

    Article  ADS  Google Scholar 

  20. Sur, S., Nandkishore, R.: New J. Phys 18, 115006 (2016)

    Article  ADS  Google Scholar 

  21. Wang, Y., Nandkishore, R.M.: Phys. Rev. B 95, 060506 (2017)

    Article  ADS  Google Scholar 

  22. Shapourian, H., Wang, Y., Ryu, S.: Phys. Rev. B 97, 094508 (2018)

    Article  ADS  Google Scholar 

  23. Muechler, L., Guguchia, Z., Orain, J.-C., Nuss, J., Schoop, L.M., Thomale, R., von Rohr, F.O.: APL Materials 7, 121103 (2019)

    Article  ADS  Google Scholar 

  24. Fang, C., Chen, Y., Kee, H.-Y., Fu, L.: Phys. Rev. B 92, 081201 (2015)

    Article  ADS  Google Scholar 

  25. Fang, C., Weng, H., Dai, X., Fang, Z.: Chin. Phys. B 25, 117106 (2016)

    Article  ADS  Google Scholar 

  26. Alexandradinata, A., Wang, Z., Bernevig, B.A.: Phys. Rev. X 6, 021008 (2016)

    Google Scholar 

  27. Wieder, B.J., Bradlyn, B., Wang, Z., Cano, J., Kim, Y., Kim, H.-S.D., Rappe, A.M., Kane, C.L., Bernevig, B.A.: Science 361, 246–251 (2018)

    Article  ADS  Google Scholar 

  28. Alexandradinata, A., Dai, X., Bernevig, B.A.: Phys. Rev. B 89, 155114 (2014)

    Article  ADS  Google Scholar 

  29. Fu, L., Kane, C.L.: Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

  30. Yu, R., Qi, X.L., Bernevig, A., Fang, Z., Dai, X.: Phys. Rev. B 84, 075119 (2011)

    Article  ADS  Google Scholar 

  31. Ran, Y., Zhang, Y., Vishwanath, A.: Nat. Phys. 5, 298–303 (2009)

    Article  Google Scholar 

  32. Hosur, P., Ghaemi, P., Mong, R.S.K., Vishwanath, A.: Phys. Rev. Lett. 107, 097001 (2011)

    Article  ADS  Google Scholar 

  33. Yan, Z., Wu, Z., Huang, W.: Phys. Rev. Lett. 124, 257001 (2020)

    Article  ADS  Google Scholar 

  34. Ghorashi, S.A.A., Hughes, T.L., Rossi, E.: Phys. Rev. Lett. 125, 037001 (2020)

    Article  ADS  Google Scholar 

  35. Kheirkhah, M., Yan, Z., Marsiglio, F.: Phys. Rev. B 103, L140502 (2021)

    Article  ADS  Google Scholar 

  36. Qin, S., Hu, L., Le, C., Zeng, J., Zhang, F.-C., Fang, C., Hu, J.: Phys. Rev. Lett. 123, 027003 (2019)

    Article  ADS  Google Scholar 

  37. Chan, C., Zhang, L., Poon, T.F.J., He, Y.-P., Wang, Y.-Q., Liu, X.-J.: Phys. Rev. Lett. 119, 047001 (2017)

    Article  ADS  Google Scholar 

  38. Kitaev, A.Y.: Phys. Usp. 44, 131–136 (2001)

    Article  ADS  Google Scholar 

  39. Budich, J.C., Ardonne, E.: Phys. Rev. B 88, 075419 (2013)

    Article  ADS  Google Scholar 

  40. Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  41. Wimmer, M.: ACM Trans. Math. Softw. 38, 1–17 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (Grant No. 12074130), the Natural Science Foundation of Guangdong Province (Grant No. 2021A1515012340), and the Science and Technology Program of Guangzhou (Grant No. 202102080434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, T. Emerging Majorana Zero Modes in Topologically Trivial Dirac Nodal Loop Semimetal Superconductors with Even Parity. J Supercond Nov Magn 35, 1807–1812 (2022). https://doi.org/10.1007/s10948-022-06254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06254-0

Keywords

Navigation