Skip to main content
Log in

Stable Majorana Modes in Spin-Polarized Wire with Strong Interactions

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

For the 1D Hubbard model with spin-orbit coupling and proximity-induced s-wave superconductivity, the damping rates of quasiparticles are studied in the framework of density-matrix renormalization group (DMRG) approach. It is shown that low-energy excitations belonging to the Hubbard bands are stable against strong electron interaction at the spin-polarized regime. In order to confirm this result analytically, the low-energy model of the strongly interacting spin-polarized nanowire was derived in the second order of perturbation theory. This model generalizes Kitaev chain, taking into account the hoppings and anomalous pairings in the secondary coordination spheres as well as terms describing charge correlations. The amplitudes of the latter ones are small, and the system can be effectively described by quadratic Hamiltonian supporting stable Majorana excitations, which confirms numerical calculations. The topological phase diagram of effective model is studied in the framework of mean-field approximation. The evolution of topological phase boundaries under increasing of charge correlations is studied, and the important role of the joint realization of different types of interactions is noted. The results obtained can be applied when describing the Al-EuS-InAs hybrid system, recently synthesized and studied in searching for Majorana bound states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Read, N., Green, D.: Phys. Rev. B 61, 10267 (2000)

    Article  ADS  Google Scholar 

  2. Kitaev, A.Y.: Phys. Usp. 44, 131 (2001)

    Article  ADS  Google Scholar 

  3. Kaladzhyan, V., Bena, C.: PRB 100, 081106 (2019)

  4. Wang, Q., Liu, C.-C., Lu, Y.-M., Zhang, F.: Phys. Rev. Lett. 121, 186801 (2018)

  5. Zhu, X.: Phys. Rev. B. 91, 205134 (2018)

  6. Nayak, C., et al.: Rev. Mod. Phys. 80(3), 1083–1159 (2008)

    Article  ADS  Google Scholar 

  7. Alicea, J.: Rep. Prog. Phys. 75, 076501 (2012)

  8. Beenakker, C.W.J.: Annu. Rev. Con. Mat. Phys. 4, 113 (2013)

    Article  Google Scholar 

  9. Elliot, S.R., Franz, M.: Rev. Mod. Phys. 87, 137 (2015)

    Article  ADS  Google Scholar 

  10. Sato, M., Ando, Y.: Rep. Prog. Phys. 80, 076501 (2017)

  11. Mackenzie, A.P., Maeno, Y.: Rev. Mod. Phys. 75, 657 (2003)

    Article  ADS  Google Scholar 

  12. Das Sarma, S., Nayak, C., Tewari, S.: Phys. Rev. B 73, 220502 (2006)

  13. Pustogow, A., et al.: Nature 574, 72 (2019)

    Article  ADS  Google Scholar 

  14. Suzuki, S.-I., Sato, M., Tanaka, Y.: Phys. Rev. B 101, 054505 (2020)

  15. Sau, J.D., Tewari, S. Phys. Rev. B 86, 104509 (2012)

  16. Sau, J.D., Lutchyn, R.M., Tewari, S., Das Sarma, S.: Phys. Rev. Lett. 104, 040502 (2010)

  17. Lutchyn, R.M., Sau, J.D., Das Sarma, S.: Phys. Rev. Lett. 105, 077001 (2010)

  18. Oreg, Y., Refael, G., von Oppen, F.: Phys. Rev. Lett. 105, 177002 (2010)

  19. Stanescu, T.D., Lutchyn, R.M., Das Sarma, S.: Phys. Rev. B 84, 144522 (2011)

  20. Mourik, V., et al.: Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  21. Deng, M.T., et al.: Nano Lett. 12, 6414 (2012)

    Article  ADS  Google Scholar 

  22. Choy, T.-P., et al.: Phys. Rev. B 84, 195442 (2011)

  23. Zhang, H., Liu, C.-X., et al.: Nature (London) 556, 74 (2018)

    Article  ADS  Google Scholar 

  24. Moore, C., Stanescu, T.D., Tewari, S.: Phys. Rev. B 97, 165302 (2018)

  25. Reeg, C., et al.: Phys. Rev. B 98, 245407 (2018)

  26. Zhang, H., et al.: Nature 581, E4 (2020)

    Article  Google Scholar 

  27. Sato, Y., et al.: Phys. Rev. B 99, 155304 (2019)

  28. Vaitiekėnas, S., Liu, Y., Krogstrup, P., Marcus, C.M.: Nat. Phys. 17 (2020)

  29. Stoudenmire, E.M., Alicea, J., Starykh, O.A., Fisher, M.P.A.: Phys. Rev. B 84, 014503 (2011)

  30. Aksenov, S.V., Zlotnikov, A.O., Shustin, M.S.: Phys. Rev. B 101, 125431 (2020)

  31. White, S.R.: Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  32. White, S.R.: Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

  33. Goldstein, G., Chamon, C.: Phys. Rev. B 86, 115122 (2012)

  34. Kells, G.: Phys. Rev. B 92, 081401(R) (2015)

    Article  ADS  Google Scholar 

  35. Kells, G.: Phys. Rev. B 92, 155434 (2015)

  36. Viyuela, O., Vodola D., Martin-Delgado, M.A.: Phys. Rev. B 94, 125121 (2016)

  37. Lepori, L., Dell’Anna, L.: New. J. Phys. 19, 103030 (2017)

  38. Alecce, A., Dell’Anna, L.: Phys. Rev. B 95, 195160 (2017)

  39. Izyumov, Y.A.: Phys. Usp. 40, 445 (1997)

    Article  ADS  Google Scholar 

  40. Val’kov, V.V., Mitskan, V.A., Shustin, M.S.: JETP Lett. 106, 798 (2017)

    Article  ADS  Google Scholar 

  41. Wong, C.L.M., Law, K.T.: Phys. Rev. B 86, 184516 (2012)

  42. Karcher, J.F., Sonner, M., Mirlin, A.D.: Phys. Rev. B 100, 134207 (2019)

Download references

Acknowledgements

I acknowledge A. O. Zlotnikov and S. V. Aksenov for fruitfull discussions.

Funding

The study was funded by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (Grant No. 20-1-4-25-1); Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Project No. 20-42-243001); and Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (Grant No. MK-4687.2022.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shustin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shustin, M.S. Stable Majorana Modes in Spin-Polarized Wire with Strong Interactions. J Supercond Nov Magn 35, 2209–2216 (2022). https://doi.org/10.1007/s10948-022-06238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06238-0

Keywords

Navigation