Skip to main content
Log in

The Ferromagnetic Study of ZnO: (Mn, N) Based on the First-Principle Calculation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The electronic and magnetic properties of ZnO: (Mn, N) and the effect of vacancy defect on its magnetism were studied systematically, using the first-principle based on density functional theory (DFT). The results show that the introduction of the N atom would make the coupling between two Mn atoms turn into the ferromagnetic coupling, which resulted from a hybridization between Mn 3d and N 2p electrons. Mn (MnZn) and N (NO) atoms have a tendency toward staying close to each other to form the –Mn–N–Mn– complex with two Mn–N bonds. Furthermore, VZn or VO are the easiest to form at the first-nearest neighbor or at the second-nearest neighbor of the –Mn–N–Mn– complex, at which, VO basically has no influence on the magnetism, while VZn would weaken ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater 9(12), 965–974 (2010)

    Article  ADS  Google Scholar 

  2. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001)

    Article  ADS  Google Scholar 

  3. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287(5455), 1019–1022 (2000)

    Article  ADS  Google Scholar 

  4. Yamamoto, T., Katayama-Yoshida, H.: Physics and control of valence states in ZnO by codoping method. Physica B 302, 155–162 (2001)

    Article  ADS  Google Scholar 

  5. Xu,H.Y., Liu, Y.C., Xu, C.S., Liu, Y.X., Shao, C.L., Mu, R.: Room-temperature ferromagnetism in (Mn, N)-codoped ZnO thin films prepared by reactive magnetron cosputtering. Applied Physics Letters 88(24), 242502 (2006)

  6. Lu, Z.L., Yan, G.Q., Wang, S., Zou, W.Q., Mo, Z.R., Lv, L.Y., Zhang, F.M., Du, Y.W., Xu, M.X., Xia, Z.H.: Influence of the oxidative annealing temperature on the magnetism of (Mn, N)-codoped ZnO thin films. Journal of Applied Physics 104(3), 033919 (2008)

  7. Yan, W.S., Sun, Z.H., Liu, Q.H., Li, Z.R., Shi, T.F., Wang, F., Qi, Z.M., Zhang, G.B., Wei, S.Q., Zhang, H.W., Chen, Z.Z.: Structures and magnetic properties of (Mn, N)-codoped ZnO thin films. Applied Physics Letters 90(24), 242509 (2007)

  8. Maouche, D., Ruterana, P., Louail, L.: Carrier-mediated ferromagnetism in N co-doped (Zn, Mn)O-based diluted magnetic semiconductors. Phys. Lett. A 365(3), 231–234 (2007)

    Article  ADS  Google Scholar 

  9. Wu, K., Gu, S., Tang, K., Zhu, S., Ye, J., Zhang, R., Zheng, Y.: Influences of unintentionally doped carbon on magnetic properties in Mn–N co-doped ZnO. Thin Solid Films 519(8), 2499–2503 (2011)

    Article  ADS  Google Scholar 

  10. Park, J.H., Kim, M.G., Jang, H.M., Ryu, S., Kim, Y.M.: Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84(8), 1338–1340 (2004)

    Article  ADS  Google Scholar 

  11. Zhang, H.W., Shi, E.W., Chen, Z.Z., Liu, X.C., Xiao, B.: Absence of intrinsic ferromagnetism in Zn1-xMnxO alloys. J Phys-Condens Mat 18(39), L477–L483 (2006)

    Article  Google Scholar 

  12. Zhao, X., Liu, E.J., Ramanujan, R.V., Chen, J.S.: Effects of rapid thermal annealing on structural, magnetic and optical properties of Ni-doped ZnO thin films. Curr Appl Phys 12(3), 834–840 (2012)

    Article  ADS  Google Scholar 

  13. Pazhanivelu, V., Selvadurai, A.P.B., Murugaraj, R.: Zn Interstitial Defects Induced Magnetic Nature In Fe Ions Doped ZnO Based DMS. Aip Conf Proc 1665, 130033 (2015)

  14. Pazhanivelu, V., Selvadurai, A.P.B., Murugaraj, R.: Zn interstitial defects induced room temperature ferromagnetism in Na+ ions codoped Zn0.95Co0.05O powders. J Mater Sci-Mater El 27(2), 1144–1150 (2016)

  15. El-Hilo, M., Dakhel, A.A.: Structural and magnetic properties of Mn-doped ZnO powders. J. Magn. Magn. Mater. 323(16), 2202–2205 (2011)

    Article  ADS  Google Scholar 

  16. Hu, L., Huang, J., He, H., Zhu, L., Liu, S., Jin, Y., Sun, L., Ye, Z.: Dual-donor (Zn(i) and V(O)) mediated ferromagnetism in copper-doped ZnO micron-scale polycrystalline films: a thermally driven defect modulation process. Nanoscale 5(9), 3918–3930 (2013)

    Article  ADS  Google Scholar 

  17. Ghosh, S., Khan, G.G., Ghosh, A., Varma, S., Mandal, K.: Zinc vacancy-induced high-Tc ferromagnetism and photoluminescence in group-1 alkali-metal substituted p-type ZnO thin films. CrystEngComm 15(38), 7748–7755 (2013)

    Article  Google Scholar 

  18. Zhuo, S.Y., Liu, X.C., Xiong, Z., Yang, J.H., Shi, E.W.: Ionized zinc vacancy mediated ferromagnetism in copper doped ZnO thin films. AIP Advances 2(1), 012184 (2012)

  19. Wang, Q., Sun, Q., Chen, G., Kawazoe, Y., Jena, P.: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys Rev B 77(20), 205411 (2008)

  20. Choi, D.M., Lee, Y.H., Lee, K.W., Park, W.K., Lee, C.E.: Room-temperature ferromagnetism and hydrogen shallow donors in rare-earth Eu-doped ZnO nanorods. Physica B: Condensed Matter 585, 412117 (2020)

  21. Kataoka, T., Yamazaki, Y., Singh, V.R., Sakamoto, Y., Fujimori, A., Takeda, Y., Ohkochi, T., Fujimori, S.I., Okane, T., Saitoh, Y., Yamagami, H., Tanaka, A., Kapilashrami, M., Belova, L., Rao, K.V.: Ferromagnetism in ZnO co-doped with Mn and N studied by soft x-ray magnetic circular dichroism. Applied Physics Letters 99(13), 132508 (2011)

  22. Oh, D.C., Kim, J.J., Makino, H., Hanada, T., Cho, M.W., Yao, T., Ko, H.J.: Characteristics of Schottky contacts to ZnO : N layers grown by molecular-beam epitaxy. Applied Physics Letters 86(4), (2005)

  23. Lu, B., Zhang, L.Q., Lu, Y.H., Ye, Z.Z., Lu, J.G., Pan, X.H., Huang, J.Y.: Ferromagnetic enhancement and magnetic anisotropy in nonpolar-oriented (Mn, Na)-codoped ZnO thin films. Applied Physics Letters 101(24), 242401 (2012)

  24. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J Phys-Condens Mat 14(11), 2717–2744 (2002)

    Article  ADS  Google Scholar 

  25. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Physical Review 140(4A), A1133-A1138 (1965)

  26. Iuşan, D., Sanyal, B., Eriksson, O.: Theoretical study of the magnetism of Mn-doped ZnO with and without defects, Physical Review B 74(23), 235208 (2006)

  27. Gopal, P., Spaldin, N.A.: Magnetic interactions in transition-metal-doped ZnO: An ab initiostudy. Physical Review B 74(9), 094418 (2006)

  28. Ali, N., Singh, B., AR, V., Lal, S., Yadav, C. S., Tarafder, K., Ghosh, S.: Ferromagnetism in Mn-doped ZnO: a joint theoretical and experimental study. The J of Phys Chem C 125(14), 7734–7745 (2021)

  29. Erhart, P., Albe, K., Klein, A.: First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects. Phys Rev B 73(20), 205203 (2006)

  30. Zuo, C., Wen, J., Zhu, S., Zhong, C.: The effect of C-Al (Ga) codoping on p-type tendency in zinc oxide by first-principles. Opt. Mater. 32(5), 595–598 (2010)

    Article  ADS  Google Scholar 

  31. Chen, L.-J., Li, W.-X., Dai, J.-F., Wang, Q.: First-prinicples study of Mn-N co-doped p-type ZnO. Acta Physica Sinica 63(19), 196101 (2014)

  32. Fukumura, T., Jin, Z., Kawasaki, M., Shono, T., Hasegawa, T., Koshihara, S., Koinuma, H.: Magnetic properties of Mn-doped ZnO. Appl. Phys. Lett. 78(7), 958–960 (2001)

    Article  ADS  Google Scholar 

  33. Yoon, S.W., Cho, S.B., We, S.C., Yoon, S., Suh, B.J., Song, H.K., Shin, Y.J.: Magnetic properties of ZnO-based diluted magnetic semiconductors. J. Appl. Phys. 93(10), 7879–7881 (2003)

    Article  ADS  Google Scholar 

  34. Neal, J.R., Behan, A.J., Ibrahim, R.M., Blythe, H.J., Ziese, M., Fox, A.M., Gehring, G.A.: Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films. Phys Rev Lett 96(19), 197208 (2006)

  35. Wang, S.-F., Chen, L.-Y., Zhang, T., Song, Y.-L.: Half-metallic ferromagnetism in Cu-doped ZnO nanostructures from first-principle prediction. J. Supercond. Novel Magn. 28(7), 2033–2038 (2015)

    Article  Google Scholar 

  36. Lamhal, K., Hayn, R., Boukortt, A., Meskine, S., Abbes, L., Zaoui, A.: Effect of (Co, N) co-doping of p-type ZnO on electronic and magnetic properties by DFT+U studies. Physica B 545, 491–497 (2018)

    Article  ADS  Google Scholar 

  37. Ruan, H.B., Fang, L., Qin, G.P., Kong, C.Y.: Effect of Annealing on the Properties of P-Type Nano Zn0.92Mn0.08O:N Films, Inec: 2010 3rd International Nanoelectronics Conference Vols 1 and 2 1088–1089 (2010)

  38. Ruan, H.B., Kong, C.Y., Qin, G.P., Li, W.J., Yang, T.Y., Wu, F., Fang, L.: Influence of Mn doping content on magnetic properties of a (Mn, N) co-doped ZnO system. J. Magn. Magn. Mater. 369, 219–222 (2014)

    Article  ADS  Google Scholar 

  39. Liu, S.M., Gu, S.L., Ye, J.D., Zhu, S.M., Liu, W., Tang, K., Shan, Z.P., Zhang, R., Zheng, Y.D., Sun, X.W.: Room-temperature ferromagnetism in Mn-N Co-doped p-ZnO epilayers by metal-organic chemical vapor deposition. Appl. Phys. A 91(3), 535–539 (2008)

    Article  ADS  Google Scholar 

  40. Ruan, H.B., Fang, L., Qin, G.P., Yang, T.Y., Li, W.J., Wu, F., Saleem, M., Kong, C.Y.: Room-temperature ferromagnetism in N+-implanted ZnO: Mn thin films. Solid State Commun. 152(17), 1625–1629 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 10775033 and 11075038). We also thank the Shenzhen Supercomputing Center (SSC) for providing computing resources of Materials Studio and Li Zhi-Wei from SSC for help and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Zhang, B. The Ferromagnetic Study of ZnO: (Mn, N) Based on the First-Principle Calculation. J Supercond Nov Magn 35, 2069–2077 (2022). https://doi.org/10.1007/s10948-022-06234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06234-4

Keywords

Navigation