Skip to main content
Log in

Maghemite Nanoparticles for DNA Extraction: Performance and Blocking Temperature

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles coated with polyethylene glycol were synthesized by coprecipitation for use in the magnetic separation of DNA (deoxyribonucleic acid). The blocking temperature of nanoparticles was studied by the methods of Mössbauer spectroscopy, ferromagnetic resonance, and using magnetometric measurements. The blocking temperature calculated from the temperature dependence of the coercive force was ~ 200 K. The calculation of the blocking temperature from the relaxation time obtained using Mössbauer spectroscopy gave a value of ~ 450 K. The blocking temperature obtained using ferromagnetic resonance was ~ 910 K. The relationship between the obtained blocking temperatures is in good agreement with the Néel-Brown formula. The constants of effective and surface anisotropy were determined by the method of ferromagnetic resonance. Isolation of DNA from blood using prepared particles and separation in a permanent magnet field revealed sufficient productivity, high speed, and the “chemical delicacy” of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kudr, J., Haddad, Y., Richtera, L., Heger, Z., Cernak, M., Adam, V., Zitka, O.: Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7, 243 (2017). https://doi.org/10.3390/nano7090243

    Article  Google Scholar 

  2. Tartaj, P., Morales, M. a del P., Veintemillas-Verdaguer, S., Gonz lez-Carre o, T., Serna, C.J.: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 36, R182–R197 (2003). https://doi.org/10.1088/0022-3727/36/13/202

  3. Komina, A.V., Yaroslavtsev, R.N., Gerasimova, Y.V., Stolyar, S.V., Olkhovsky, I.A., Bairmani, M.S.: Magnetic nanoparticles for extracting DNA from blood cells. Bull. Russ. Acad. Sci. Phys. 84, 1362–1365 (2020). https://doi.org/10.3103/S1062873820110155

    Article  Google Scholar 

  4. Tang, C., He, Z., Liu, H., Xu, Y., Huang, H., Yang, G., Xiao, Z., Li, S., Liu, H., Deng, Y., Chen, Z., Chen, H., He, N.: Application of magnetic nanoparticles in nucleic acid detection. J. Nanobiotechnology. 18, 62 (2020). https://doi.org/10.1186/s12951-020-00613-6

    Article  Google Scholar 

  5. Wang, J., Ali, Z., Si, J., Wang, N., He, N., Li, Z.: Simultaneous extraction of DNA and RNA from hepatocellular carcinoma (Hep G2) based on silica-coated magnetic nanoparticles. J. Nanosci. Nanotechnol. 17, 802–806 (2017). https://doi.org/10.1166/jnn.2017.12442

    Article  Google Scholar 

  6. Stolyar, S.V., Krasitskaya, V.V., Frank, L.A., Yaroslavtsev, R.N., Chekanova, L.A., Gerasimova, Y.V., Volochaev, M.N., Bairmani, M.S., Velikanov, D.A.: Polysaccharide-coated iron oxide nanoparticles: synthesis, properties, surface modification. Mater. Lett. 284, 128920 (2021). https://doi.org/10.1016/j.matlet.2020.128920

    Article  Google Scholar 

  7. Chen, Z., Wu, Y., Chen, H., Mou, X., Chen, Z., Deng, Y., Liu, B., Wan, S.: Design and application of automatic and rapid nucleic acid extractor using magnetic nanoparticles. J. Nanosci. Nanotechnol. 16, 6998–7004 (2016). https://doi.org/10.1166/jnn.2016.12702

    Article  Google Scholar 

  8. Wu, Y., Chen, H., Chen, Z., Nie, L., Liu, B., He, N.: Multifunctional device for nucleic acid extraction based on magnetic separation and its co-working with liquid handling system for high throughput sample preparation. J. Nanosci. Nanotechnol. 16, 6919–6924 (2016). https://doi.org/10.1166/jnn.2016.12583

    Article  Google Scholar 

  9. Dadfar, S.M., Roemhild, K., Drude, N.I., von Stillfried, S., Knüchel, R., Kiessling, F., Lammers, T.: Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 138, 302–325 (2019). https://doi.org/10.1016/j.addr.2019.01.005

    Article  Google Scholar 

  10. Chilom, C.G., Sandu, N., Bălăşoiu, M., Yaroslavtsev, R.N., Stolyar, S.V., Rogachev, A.V.: Ferrihydrite nanoparticles insights: structural characterization, lactate dehydrogenase binding and virtual screening assay. Int. J. Biol. Macromol. 164, 3559–3567 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.242

    Article  Google Scholar 

  11. Stolyar, S.V., Balaev, D.A., Ladygina, V.P., Dubrovskiy, A.A., Krasikov, A.A., Popkov, S.I., Bayukov, O.A., Knyazev, Y.V., Yaroslavtsev, R.N., Volochaev, M.N., Iskhakov, R.S., Dobretsov, K.G., Morozov, E.V., Falaleev, O.V., Inzhevatkin, E.V., Kolenchukova, O.A., Chizhova, I.A.: Bacterial ferrihydrite nanoparticles: preparation, magnetic properties, and application in medicine. J. Supercond. Nov. Magn. 31, 2297–2304 (2018). https://doi.org/10.1007/s10948-018-4700-1

    Article  Google Scholar 

  12. Borlido, L., Azevedo, A.M., Roque, A.C.A., Aires-Barros, M.R.: Magnetic separations in biotechnology. Biotechnol. Adv. 31, 1374–1385 (2013). https://doi.org/10.1016/j.biotechadv.2013.05.009

    Article  Google Scholar 

  13. Concas, G., Congiu, F., Muscas, G., Peddis, D.: Determination of blocking temperature in magnetization and Mössbauer time scale: a functional form approach. J. Phys. Chem. C. 121, 16541–16548 (2017). https://doi.org/10.1021/acs.jpcc.7b01748

    Article  Google Scholar 

  14. Wickman, H.H., Klein, M.P., Shirley, D.A.: Paramagnetic hyperfine structure and relaxation effects in Mössbauer spectra: Fe57 in ferrichrome A. Phys. Rev. 152, 345–357 (1966). https://doi.org/10.1103/PhysRev.152.345

    Article  ADS  Google Scholar 

  15. van der Woude, F., Dekker, A.J.: The relation between magnetic properties and the shape of Mössbauer spectra. Phys. status solidi. 9, 775–786 (1965). https://doi.org/10.1002/pssb.19650090314

    Article  Google Scholar 

  16. Iskhakov, R.S., Komogortsev, S.V., Stolyar, S.V., Prokof’ev, D.E., Zhigalov, V.S.: Structure and magnetic properties of nanocrystalline condensates of iron obtained by pulse plasma evaporation. Phys. Met. Metallogr. 88, 261–269 (1999)

  17. Komogortsev, S.V., Iskhakov, R.S., Balaev, A.D., Okotrub, A.V., Kudashov, A.G., Momot, N.A., Smirnov, S.I.: Influence of the inhomogeneity of local magnetic parameters on the curves of magnetization in an ensemble of Fe3C ferromagnetic nanoparticles encapsulated in carbon nanotubes. Phys. Solid State. 51, 2286–2291 (2009). https://doi.org/10.1134/S1063783409110158

    Article  ADS  Google Scholar 

  18. Komogortsev, S.V., Iskhakov, R.S., Balaev, A.D., Kudashov, A.G., Okotrub, A.V., Smirnov, S.I.: Magnetic properties of Fe3C ferromagnetic nanoparticles encapsulated in carbon nanotubes. Phys. Solid State. 49, 734–738 (2007). https://doi.org/10.1134/S1063783407040233

    Article  ADS  Google Scholar 

  19. Pfeiffer, H.: Determination of anisotropy field distribution in particle assemblies taking into account thermal fluctuations. Phys. status solidi. 118, 295–306 (1990). https://doi.org/10.1002/pssa.2211180133

    Article  ADS  Google Scholar 

  20. Sharrock, M.P.: Time dependence of switching fields in magnetic recording media (invited). J. Appl. Phys. 76, 6413 (1994). https://doi.org/10.1063/1.358282

    Article  ADS  Google Scholar 

  21. Usov, N.A., Grebenshchikov, Y.B.: Hysteresis loops of an assembly of superparamagnetic nanoparticles with uniaxial anisotropy. J. Appl. Phys. 106, 023917 (2009). https://doi.org/10.1063/1.3173280

    Article  ADS  Google Scholar 

  22. Poperechny, I.S., Raikher, Y.L., Stepanov, V.I.: Dynamic hysteresis of a uniaxial superparamagnet: semi-adiabatic approximation. Phys. B Condens. Matter. 435, 58–61 (2014). https://doi.org/10.1016/j.physb.2013.08.049

    Article  ADS  Google Scholar 

  23. Garcı́a-Otero, J., Garcı́a-Bastida, A.., Rivas, J.: Influence of temperature on the coercive field of non-interacting fine magnetic particles. J. Magn. Magn. Mater. 189, 377–383 (1998). https://doi.org/10.1016/S0304-8853(98)00243-1

  24. Knyazev, Y. V., Balaev, D.A., Kirillov, V.L., Bayukov, O.A., Mart’yanov, O.N.: Mössbauer spectroscopy study of the superparamagnetism of ultrasmall ϵ-Fe2O3 nanoparticles. JETP Lett. 108, 527–531 (2018). https://doi.org/10.1134/S0021364018200092

  25. Tronc, E., Chanéac, C., Jolivet, J.P.: Structural and magnetic characterization ofε-Fe2O3. J. Solid State Chem. 139, 93–104 (1998). https://doi.org/10.1006/jssc.1998.7817

    Article  ADS  Google Scholar 

  26. Denardin, J.C., Brandl, A.L., Knobel, M., Panissod, P., Pakhomov, A.B., Liu, H., Zhang, X.X.: Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1–x granular films. Phys. Rev. B. 65, 064422 (2002). https://doi.org/10.1103/PhysRevB.65.064422

    Article  ADS  Google Scholar 

  27. Tobia, D., Winkler, E., Zysler, R.D., Granada, M., Troiani, H.E., Fiorani, D.: Exchange bias of Co nanoparticles embedded in Cr2O3 and Al2O3 matrices. J. Appl. Phys. 106, 103920 (2009). https://doi.org/10.1063/1.3259425

    Article  ADS  Google Scholar 

  28. Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Popkov, S.I., Stolyar, S.V., Bayukov, O.A., Iskhakov, R.S., Ladygina, V.P., Yaroslavtsev, R.N.: Magnetic properties of heat treated bacterial ferrihydrite nanoparticles. J. Magn. Magn. Mater. 410, 171–180 (2016). https://doi.org/10.1016/j.jmmm.2016.02.059

    Article  ADS  Google Scholar 

  29. Raikher, Y.L., Stepanov, V.I.: Thermal fluctuation effect on the ferromagnetic-resonance line-shape in disperse ferromagnets. JETP. 102, 1409–1423 (1992)

    Google Scholar 

  30. Poperechny, I.S., Raikher, Y.L.: Ferromagnetic resonance in uniaxial superparamagnetic particles. Phys. Rev. B. 93, 014441 (2016). https://doi.org/10.1103/PhysRevB.93.014441

    Article  ADS  Google Scholar 

  31. Pisane, K.L., Despeaux, E.C., Seehra, M.S.: Magnetic relaxation and correlating effective magnetic moment with particle size distribution in maghemite nanoparticles. J. Magn. Magn. Mater. 384, 148–154 (2015). https://doi.org/10.1016/j.jmmm.2015.02.038

    Article  ADS  Google Scholar 

  32. Gazeau, F., Shilov, V., Bacri, J.C., Dubois, E., Gendron, F., Perzynski, R., Raikher, Y.L., Stepanov, V.I.: Magnetic resonance of nanoparticles in a ferrofluid: evidence of thermofluctuational effects. J. Magn. Magn. Mater. 202, 535–546 (1999). https://doi.org/10.1016/S0304-8853(99)00156-0

    Article  ADS  Google Scholar 

  33. Pérez, N., Guardia, P., Roca, A.G., Morales, M.P., Serna, C.J., Iglesias, O., Bartolomé, F., García, L.M., Batlle, X., Labarta, A.: Surface anisotropy broadening of the energy barrier distribution in magnetic nanoparticles. Nanotechnology 19, 475704 (2008). https://doi.org/10.1088/0957-4484/19/47/475704

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund, with research projects no. 20–42-242902. We are grateful to the Center of Collective Use of FRC KSC SB RAS for the provided equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Yaroslavtsev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyar, S.V., Komogortsev, S.V., Gorbenko, A.S. et al. Maghemite Nanoparticles for DNA Extraction: Performance and Blocking Temperature. J Supercond Nov Magn 35, 1929–1936 (2022). https://doi.org/10.1007/s10948-022-06233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06233-5

Keywords

Navigation