Skip to main content
Log in

Synthesis and Characterization of La(Ce, Ba)NiO3 Perovskite-Type Oxides

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, an attempt was made to synthesize LaNiO3, CeNiO3, and BaNiO3, and Ce3+ and Ba2+ co-substituted LaNiO3. These samples were further subjected to various material characterization techniques in order to evaluate their physio-chemical properties. Scanning electron microscope (SEM) images showed large chunks of aggregated nanoparticles with minute voids. The EDX-derived atomic composition deviated from the nominal composition suggesting the occurrence of multiple phases. In addition, transmission electron microscope (TEM) images revealed that the samples exhibit uneven spherical shape with a high degree of aggregation. The Fourier transformed-infrared (FT-IR) spectra of the synthesized samples show vibrations of the BO6 octahedral indicating the presence of Ni–O bonds. In addition, metal-carboxyl vibrations were identified from the peaks at 1400 and 860 cm−1. Optical diffuse reflectance spectra (DRS) showed certain peaks originating from the O2− (2p)\(\to\) Ni2+ (3d) charge transfer. The X-ray powder diffraction (XRPD) analysis revealed the existence of multiple phases for the samples CeNiO3, BaNiO3, and La(Ce, Ba)NiO3. Moreover, La(Ce, Ba)NiO3 contained four phases showing that the co-substitution of Ba2+ and Ce3+ into LaNiO3 may require more sophisticated methodologies. The sample BaNiO3 showed maximum weight loss, due to the existence of carbonate phase. The dielectric properties decreased with increasing frequency, while the ac electrical conductivity enhanced with increasing frequencies obeying the Maxwell–Wagner two-layer model in accordance with Koop’s phenomenological theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen, J., He, Z., Li, G., An, T., Shi, H., Li, Y.: Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene. Appl. Catal. B Environ. 209, 146–154 (2017). https://doi.org/10.1016/j.apcatb.2017.02.066

    Article  Google Scholar 

  2. Exner, J., Nazarenus, T., Kita, J., Moos, R.: Dense Y-doped ion conducting perovskite films of BaZrO3, BaSnO3, and BaCeO3 for SOFC applications produced by powder aerosol deposition at room temperature. Int. J. Hydrogen Energy. 45, 10000–10016 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.164

    Article  Google Scholar 

  3. Ji, Q., Bi, L., Zhang, J., Cao, H., Zhao, X.S.: The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 13, 1408–1428 (2020). https://doi.org/10.1039/d0ee00092b

    Article  Google Scholar 

  4. Bulemo, P.M., Kim, I.-D.: Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors. J. Korean Ceram. Soc. 57, 24–39 (2020). https://doi.org/10.1007/s43207-019-00003-1

    Article  Google Scholar 

  5. Sun, C., Alonso, J.A., Bian, J.: Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 11, (2021). https://doi.org/10.1002/aenm.202000459

  6. Malkhandi, S., Trinh, P., Manohar, A.K., Manivannan, A., Balasubramanian, M., Prakash, G.K.S., Narayanan, S.R.: Design insights for tuning the electrocatalytic activity of perovskite oxides for the oxygen evolution reaction. J. Phys. Chem. C. 119, 8004–8013 (2015). https://doi.org/10.1021/jp512722x

    Article  Google Scholar 

  7. Machado, P., Scigaj, M., Gazquez, J., Rueda, E., Sánchez-Díaz, A., Fina, I., Gibert-Roca, M., Puig, T., Obradors, X., Campoy-Quiles, M., Coll, M.: Band gap tuning of solution-processed ferroelectric perovskite BiFe1- xCoxO3 thin films. Chem. Mater. 31, 947–954 (2019). https://doi.org/10.1021/acs.chemmater.8b04380

    Article  Google Scholar 

  8. Yi, Y., Liu, H., Chu, B., Qin, Z., Dong, L., He, H., Tang, C., Fan, M., Bin, L.: Catalytic removal NO by CO over LaNi0.5M0.5O3 (M = Co, Mn, Cu) perovskite oxide catalysts: tune surface chemical composition to improve N2 selectivity. Chem. Eng. J. 369, 511–521 (2019). https://doi.org/10.1016/j.cej.2019.03.066

  9. Tsounis, C., Wang, Y., Arandiyan, H., Wong, R.J., Toe, C.Y., Amal, R., Scott, J.: Tuning the selectivity of LaNiO3 perovskites for CO2 hydrogenation through potassium substitution. Catalysts. 10, (2020). https://doi.org/10.3390/catal10040409

  10. Arandiyan, H., S. Mofarah, S., Sorrell, C.C., Doustkhah, E., Sajjadi, B., Hao, D., Wang, Y., Sun, H., Ni, B.-J., Rezaei, M., Shao, Z., Maschmeyer, T.: Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chem. Soc. Rev. 50, 10116–10211 (2021). https://doi.org/10.1039/d0cs00639d

  11. Zhu, H., Zhang, P., Dai, S.: Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 5, 6370–6385 (2015). https://doi.org/10.1021/acscatal.5b01667

    Article  Google Scholar 

  12. Mudu, F., Olsbye, U., Arstad, B., Diplas, S., Li, Y., Fjellvåg, H.: Aluminium substituted lanthanum based perovskite type oxides, non-stoichiometry and performance in methane partial oxidation by framework oxygen. Appl. Catal. A Gen. 523, 171–181 (2016). https://doi.org/10.1016/j.apcata.2016.05.013

    Article  Google Scholar 

  13. Hwang, J., Rao, R.R., Giordano, L., Katayama, Y., Yu, Y., Shao-Horn, Y.: Perovskites in catalysis and electrocatalysis. Science (80). 358, 751–756 (2017). https://doi.org/10.1126/science.aam7092

  14. Rizwan, M., Gul, S., Iqbal, T., Mushtaq, U., Farooq, M.H., Farman, M., Bibi, R., Ijaz, M.: A review on perovskite lanthanum aluminate (LaAlO3), its properties and applications. Mater. Res. Express. 6, (2019). https://doi.org/10.1088/2053-1591/ab4629

  15. Dias, J.A., Andrade M.A.S., J., Santos, H.L.S., Morelli, M.R., Mascaro, L.H.: Lanthanum-based perovskites for catalytic oxygen evolution reaction. Chem. Electro. Chem 7, 3173–3192 (2020). https://doi.org/10.1002/celc.202000451

  16. Jiang, Q., Cao, Y., Liu, X., Zhang, H., Hong, H., Jin, H.: Chemical looping combustion over a lanthanum nickel perovskite-type oxygen carrier with facilitated O2-transport. Energy Fuels 34, 8732–8739 (2020). https://doi.org/10.1021/acs.energyfuels.0c01038

    Article  Google Scholar 

  17. Sharma, V., Mahapatra, M.K., Krishnan, S., Thatcher, Z., Huey, B.D., Singh, P., Ramprasad, R.: Effects of moisture on (La, A)MnO3 (A = Ca, Sr, and Ba) solid oxide fuel cell cathodes: a first-principles and experimental study. J. Mater. Chem. A. 4, 5605–5615 (2016). https://doi.org/10.1039/c6ta00603e

    Article  Google Scholar 

  18. Bian, L., Duan, C., Wang, L., O’Hayre, R., Cheng, J., Chou, K.-C.: Ce-doped La0.7Sr0.3Fe0.9Ni0.1O3-δ as symmetrical electrodes for high performance direct hydrocarbon solid oxide fuel cells. J. Mater. Chem. A. 5, 15253–15259 (2017). https://doi.org/10.1039/c7ta03001k

  19. Kolisetty, A., Fu, Z., Koc, R.: Development of La(CrCoFeNi)O3 system perovskites as interconnect and cathode materials for solid oxide fuel cells. Ceram. Int. 43, 7647–7652 (2017). https://doi.org/10.1016/j.ceramint.2017.03.061

    Article  Google Scholar 

  20. Rehman, S.U., Shaur, A., Song, R.-H., Lim, T.-H., Hong, J.-E., Park, S.-J., Lee, S.-B.: Nano-fabrication of a high-performance LaNiO3 cathode for solid oxide fuel cells using an electrochemical route. J. Power Sources. 429, 97–104 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.007

    Article  ADS  Google Scholar 

  21. Petrie, J.R., Cooper, V.R., Freeland, J.W., Meyer, T.L., Zhang, Z., Lutterman, D.A., Lee, H.N.: Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites. J. Am. Chem. Soc. 138, 2488–2491 (2016). https://doi.org/10.1021/jacs.5b11713

    Article  Google Scholar 

  22. Zhao, Y., Hang, Y., Zhang, Y., Wang, Z., Yao, Y., He, X., Zhang, C., Zhang, D.: Strontium-doped perovskite oxide La1-xSrxMnO3 (x = 0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O2 batteries. Electrochim. Acta. 232, 296–302 (2017). https://doi.org/10.1016/j.electacta.2017.02.155

  23. Dai, Y., Yu, J., Cheng, C., Tan, P., Ni, M.: Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries. Chem. Eng. J. 397, (2020). https://doi.org/10.1016/j.cej.2020.125516

  24. Hu, Q., Yue, B., Shao, H., Yang, F., Wang, J., Wang, Y., Liu, J.: Facile syntheses of perovskite type LaMO3 (M=Fe, Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. J. Alloys Compd. 852, (2021). https://doi.org/10.1016/j.jallcom.2020.157002

  25. Yan, K.-L., Fan, R.-H., Chen, M., Sun, K., Yin, L.-W., Li, H., Pan, S.-B., Yu, M.-X.: Perovskite (La, Sr)MnO3 with tunable electrical properties by the Sr-doping effect. J. Alloys Compd. 628, 429–432 (2015). https://doi.org/10.1016/j.jallcom.2014.12.137

    Article  Google Scholar 

  26. Peng, T., Liu, X., Dai, K., Xiao, J., Song, H.: Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder. Mater. Res. Bull. 41, 1638–1645 (2006). https://doi.org/10.1016/j.materresbull.2006.02.026

    Article  Google Scholar 

  27. Zhu, Y., Zhou, W., Yu, J., Chen, Y., Liu, M., Shao, Z.: Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28, 1691–1697 (2016). https://doi.org/10.1021/acs.chemmater.5b04457

    Article  Google Scholar 

  28. Wang, L., Stoerzinger, K.A., Chang, L., Zhao, J., Li, Y., Tang, C.S., Yin, X., Bowden, M.E., Yang, Z., Guo, H., You, L., Guo, R., Wang, J., Ibrahim, K., Chen, J., Rusydi, A., Wang, J., Chambers, S.A., Du, Y.: Tuning bifunctional oxygen electrocatalysts by changing the A-site rare-earth element in perovskite nickelates. Adv. Funct. Mater. 28, (2018). https://doi.org/10.1002/adfm.201803712

  29. Hossain, A., Roy, S., Sakthipandi, K.: The external and internal influences on the tuning of the properties of perovskites: an overview. Ceram. Int. 45, 4152–4166 (2019). https://doi.org/10.1016/j.ceramint.2018.11.102

    Article  Google Scholar 

  30. Herklotz, A., Wong, A.T., Meyer, T., Biegalski, M.D., Lee, H.N., Ward, T.Z.: Controlling octahedral rotations in a perovskite via strain doping. Sci. Rep. 6, (2016). https://doi.org/10.1038/srep26491

  31. Coşkun, M., Polat, Ö., Coşkun, F.M., Durmuş, Z., Çağlar, M., Türüt, A.: Frequency and temperature dependent electrical and dielectric properties of LaCrO3 and Ir doped LaCrO3 perovskite compounds. J. Alloys Compd. 740, 1012–1023 (2018). https://doi.org/10.1016/j.jallcom.2018.01.022

    Article  Google Scholar 

  32. Ma, P.P., Zhu, B., Lei, N., Liu, Y.K., Yu, B., Lu, Q.L., Dai, J.M., Li, S.H., Jiang, G.H.: Effect of Sr substitution on structure and electrochemical properties of perovskite-type LaMn0.9Ni0.1O3 nanofibers. Mater. Lett. 252, 23–26 (2019). https://doi.org/10.1016/j.matlet.2019.05.090

  33. Zhang, X., Pei, C., Chang, X., Chen, S., Liu, R., Zhao, Z.-J., Mu, R., Gong, J.: FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting. J. Am. Chem. Soc. 142, 11540–11549 (2020). https://doi.org/10.1021/jacs.0c04643

    Article  Google Scholar 

  34. Megarajan, S.K., Rayalu, S., Nishibori, M., Teraoka, Y., Labhsetwar, N.: Effects of surface and bulk silver on PrMnO3+δ perovskite for CO and soot oxidation: experimental evidence for the chemical state of silver. ACS Catal. 5, 301–309 (2015). https://doi.org/10.1021/cs500880w

    Article  Google Scholar 

  35. Zhang, Z., Chen, D., Dong, F., Xu, X., Hao, Y., Shao, Z.: Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. J. Memb. Sci. 519, 11–21 (2016). https://doi.org/10.1016/j.memsci.2016.07.043

    Article  Google Scholar 

  36. Chen, G., Zhou, W., Guan, D., Sunarso, J., Zhu, Y., Hu, X., Zhang, W., Shao, Z.: Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3−d nanofilms with tunable oxidation state. Sci. Adv. 3, (2017). https://doi.org/10.1126/sciadv.1603206

  37. Xiong, J., Zhong, H., Li, J., Zhang, X., Shi, J., Cai, W., Qu, K., Zhu, C., Yang, Z., Beckman, S.P., Cheng, H.: Engineering highly active oxygen sites in perovskite oxides for stable and efficient oxygen evolution. Appl. Catal. B Environ. 256, (2019). https://doi.org/10.1016/j.apcatb.2019.117817

  38. Yang, J., Hu, S., Fang, Y., Hoang, S., Li, L., Yang, W., Liang, Z., Wu, J., Hu, J., Xiao, W., Pan, C., Luo, Z., Ding, J., Zhang, L., Guo, Y.: Oxygen vacancy promoted o2 activation over perovskite oxide for low-temperature co oxidation. ACS Catal. 9, 9751–9763 (2019). https://doi.org/10.1021/acscatal.9b02408

    Article  Google Scholar 

  39. Cui, Z., Lyu, N., Ding, Y., Bai, K.: Noncovalently functionalization of Janus MoSSe monolayer with organic molecules. Phys. E Low-Dimensional Syst. Nanostructures. 127, (2021). https://doi.org/10.1016/j.physe.2020.114503

  40. Cui, Z., Luo, Y., Yu, J., Xu, Y.: Tuning the electronic properties of MoSi2N4 by molecular doping: a first principles investigation. Phys. E Low-Dimensional Syst. Nanostructures. 134, (2021). https://doi.org/10.1016/j.physe.2021.114873

  41. Cui, Z., Bai, K., Wang, X., Li, E., Zheng, J.: Electronic, magnetism, and optical properties of transition metals adsorbed g-GaN. Phys. E Low-Dimensional Syst. Nanostructures. 118, (2020). https://doi.org/10.1016/j.physe.2019.113871

  42. Cui, Z., Wang, M., Lyu, N., Zhang, S., Ding, Y., Bai, K.: Electronic, magnetism and optical properties of transition metals adsorbed puckered arsenene. Superlattices Microstruct. 152, (2021). https://doi.org/10.1016/j.spmi.2021.106852

  43. Sankannavar, R., Sandeep, K.C., Kamath, S., Suresh, A.K., Sarkar, A.: Impact of strontium-substitution on oxygen evolution reaction of lanthanum nickelates in alkaline solution. J. Electrochem. Soc. 165, J3236–J3245 (2018). https://doi.org/10.1149/2.0301815jes

    Article  Google Scholar 

  44. Sankannavar, R., Sarkar, A.: The electrocatalysis of oxygen evolution reaction on La1−xCaxFeO3−δ perovskites in alkaline solution. Int. J. Hydrogen Energy. 43, 4682–4690 (2018). https://doi.org/10.1016/j.ijhydene.2017.08.092

    Article  Google Scholar 

  45. Kim, H.-Y., Shin, J., Jang, I.-C., Ju, Y.-W.: Hydrothermal synthesis of three-dimensional perovskite NiMnO3 oxide and application in supercapacitor electrode. Energies. 13, (2019). https://doi.org/10.3390/en13010036

  46. Nguyen, A.T., Pham, V.N.T., Nguyen, T.T.L., Mittova, V.O., Vo, Q.M., Berezhnaya, M. V, Mittova, I.Y., Do, T.H., Chau, H.D.: Crystal structure and magnetic properties of perovskite YFe1-xMnxO3 nanopowders synthesized BY CO-PRECIPITATION method. Solid State Sci. 96, (2019). https://doi.org/10.1016/j.solidstatesciences.2019.06.011

  47. Durai, L., Badhulika, S.: A facile, solid-state reaction assisted synthesis of a berry-like NaNbO3 perovskite structure for binder-free, highly selective sensing of dopamine in blood samples. New J. Chem. 43, 11994–12003 (2019). https://doi.org/10.1039/c9nj02282a

    Article  Google Scholar 

  48. Bibi, I., Maqbool, H., Iqbal, S., Majid, F., Kamal, S., Alwadai, N., Iqbal, M.: La1-xGdxCr1-yNiyO3 perovskite nanoparticles synthesis by micro-emulsion route: dielectric, magnetic and photocatalytic properties evaluation. Ceram. Int. 47, 5822–5831 (2021). https://doi.org/10.1016/j.ceramint.2020.11.033

    Article  Google Scholar 

  49. Yu, L., Xu, N., Zhu, T., Xu, Z., Sun, M., Geng, D.: La0.4Sr0.6Co0.7Fe0.2Nb0.1O3-δ perovskite prepared by the sol-gel method with superior performance as a bifunctional oxygen electrocatalyst. Int. J. Hydrogen Energy. 45, 30583–30591 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.105

  50. Jouannaux, J., Haeussler, A., Drobek, M., Ayral, A., Abanades, S., Julbe, A.: Lanthanum manganite perovskite ceramic powders for CO2 splitting: influence of Pechini synthesis parameters on sinterability and reactivity. Ceram. Int. 45, 15636–15648 (2019). https://doi.org/10.1016/j.ceramint.2019.05.075

    Article  Google Scholar 

  51. Du, X., Ai, H., Chen, M., Liu, D., Chen, S., Wang, X., Lo, K.H., Pan, H.: PLD-fabricated perovskite oxide nanofilm as efficient electrocatalyst with highly enhanced water oxidation performance. Appl. Catal. B Environ. 272, (2020). https://doi.org/10.1016/j.apcatb.2020.119046

  52. Petrović, S., Rožić, L., Grbić, B., Radić, N., Cherkezova-Zheleva, Z., Stojadinović, S.: Structural, optical and photocatalytic properties of LaTi0.4Mg0.4Fe0.2O3 perovskite prepared by high-energy ball milling. J. Solid State Chem. 297, (2021). https://doi.org/10.1016/j.jssc.2021.122085

  53. Wang, Y., Liu, M., Chen, W., Mao, L., Shangguan, W.: Ag loaded on layered perovskite H2SrTa2O7 to enhance the selectivity of photocatalytic CO2 reduction with H2O. J. Alloys Compd. 786, 149–154 (2019). https://doi.org/10.1016/j.jallcom.2019.01.325

    Article  Google Scholar 

  54. Wang, W., Lin, B., Zhang, H., Sun, Y., Zhang, X., Yang, H.: Synthesis, morphology and electrochemical performances of perovskite-type oxide LaxSr1-xFeO3 nanofibers prepared by electrospinning. J. Phys. Chem. Solids. 124, 144–150 (2019). https://doi.org/10.1016/j.jpcs.2018.09.011

    Article  ADS  Google Scholar 

  55. Hkiri, K., Mohamed, H.E.A., Khanyile, B.S., Mtshali, C., Nkosi, M., Ben Salem, M., Maaza, M., Zouaoui, M.: Deposition of CaZrO3 thin films by EB-PVD: effects of substrate on the composition, the structure, the morphology and the optical properties. Surfaces and Interfaces. 25, (2021). https://doi.org/10.1016/j.surfin.2021.101259

  56. Zhou, Y., Guan, X., Zhou, H., Ramadoss, K., Adam, S., Liu, H., Lee, S., Shi, J., Tsuchiya, M., Fong, D.D., Ramanathan, S.: Strongly correlated perovskite fuel cells. Nature 534, 231–234 (2016). https://doi.org/10.1038/nature17653

    Article  ADS  Google Scholar 

  57. Guo, H., Huang, J., Zhou, H., Zuo, F., Jiang, Y., Zhang, K.H.L., Fu, X., Bu, Y., Cheng, W., Sun, Y.: Unusual role of point defects in perovskite nickelate electrocatalysts. ACS Appl. Mater. Interfaces. (2021). https://doi.org/10.1021/acsami.1c04903

    Article  Google Scholar 

  58. Cao, C., Shang, C., Li, X., Wang, Y., Liu, C., Wang, X., Zhou, S., Zeng, J.: Dimensionality control of electrocatalytic activity in perovskite nickelates. Nano Lett. 20, 2837–2842 (2020). https://doi.org/10.1021/acs.nanolett.0c00553

    Article  ADS  Google Scholar 

  59. Ramadoss, K., Zuo, F., Sun, Y., Zhang, Z., Lin, J., Bhaskar, U., Shin, S., Alam, M.A., Guha, S., Weinstein, D., Ramanathan, S.: Proton-doped strongly correlated perovskite nickelate memory devices. IEEE Electron Device Lett. 39, 1500–1503 (2018). https://doi.org/10.1109/LED.2018.2865776

    Article  Google Scholar 

  60. Wang, L., Dash, S., Chang, L., You, L., Feng, Y., He, X., Jin, K.-J., Zhou, Y., Ong, H.G., Ren, P., Wang, S., Chen, L., Wang, J.: Oxygen vacancy induced room-temperature metal-insulator transition in nickelate films and its potential application in photovoltaics. ACS Appl. Mater. Interfaces. 8, 9769–9776 (2016). https://doi.org/10.1021/acsami.6b00650

    Article  Google Scholar 

  61. Chang, L., Wang, L., You, L., Yang, Z., Abdelsamie, A., Zhang, Q., Zhou, Y., Gu, L., Chambers, S.A., Wang, J.: Tuning photovoltaic performance of perovskite nickelates heterostructures by changing the A-site rare-earth element. ACS Appl. Mater. Interfaces. 11, 16191–16197 (2019). https://doi.org/10.1021/acsami.9b01851

    Article  Google Scholar 

  62. Chang, L., Wang, L., You, L., Zhou, Y., Fang, L., Wang, S., Wang, J.: Band gap tuning of nickelates for photovoltaic applications. J. Phys. D. Appl. Phys. 49, (2016). https://doi.org/10.1088/0022-3727/49/44/44LT02

  63. Peña, M.A., Fierro, J.L.G.: Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2017 (2001). https://doi.org/10.1021/cr980129f

    Article  Google Scholar 

  64. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  65. Bruker AXS.: TOPAS V6: “General profile and structure analysis software for powder diffraction data”-User’s Manual, Bruker AXS, Karlruche, German (2017)

  66. Cheary, R.W., Coelho, A.: A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25, 109–121 (1992). https://doi.org/10.1107/S0021889891010804

    Article  Google Scholar 

  67. Cheary, R.W., Coelho, A.A.: Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Crystallogr. 31, 851–861 (1998). https://doi.org/10.1107/S0021889898006876

    Article  Google Scholar 

  68. Cheary, R.W., Coelho, A.A.: Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure. J. Appl. Crystallogr. 31, 862–868 (1998). https://doi.org/10.1107/S0021889898006888

  69. Balzar, D.: Voigt-function model in diffraction line-broadening analysis. Int. union Crystallogr. Monogr. Crystallogr. 10, 94–126 (1999)

    Google Scholar 

  70. Zhang, Y., Jin, Z., Chen, L., Wang, J.: SrFexNi1-xO3-δ perovskites coated on Ti anodes and their electrocatalytic properties for cleaning nitrogenous wastewater. Materials (Basel). 12, (2019). https://doi.org/10.3390/ma12030511

  71. Zhu, J., Xiao, D., Li, J., Yang, X., Wu, Y.: Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1-xCexSrNiO4 (0 ≤ x ≤ 0.3). J. Mol. Catal. A Chem.234, 99–105 (2005). https://doi.org/10.1016/j.molcata.2005.02.015

  72. Wu, B., Xiong, Y.: A novel low-temperature NO removal approach with •OH from catalytic decomposition of H2O2 over La1- xCaxFeO3 oxides. J. Chem. Technol. Biotechnol. 93, 43–53 (2018). https://doi.org/10.1002/jctb.5317

    Article  Google Scholar 

  73. Kubelka, P., Munk, F.: Ein Beitrag zur Optik der Farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  74. López, R., Gómez, R.: Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61, 1–7 (2012). https://doi.org/10.1007/s10971-011-2582-9

    Article  Google Scholar 

  75. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. status solidi. 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  Google Scholar 

  76. Davis, E.A., Mott, N.F.: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061

  77. Mott, N.F., Davis, E.A.: Electronic processes in non-crystalline materials. Oxford university press (2012)

  78. Pankove, J.I.: Optical processes in semiconductors. Courier Corporation (1975)

  79. Makuła, P., Pacia, M., Macyk, W.: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  Google Scholar 

  80. Saleem, M., Singh, D., Mishra, A., Varshney, D.: Structural, transport and collosal dielectric properties of A-site substituted La2NiO4. Mater. Res. Express. 6, (2019). https://doi.org/10.1088/2053-1591/aaecf7

  81. Toby, B.H.: R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2006). https://doi.org/10.1154/1.2179804

    Article  ADS  Google Scholar 

  82. Mccusker, L.B., Von Dreele, R.B., Cox, D.E., Louër, D., Scardi, P.: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999). https://doi.org/10.1107/S0021889898009856

    Article  Google Scholar 

  83. Li, L., Jiang, B., Tang, D., Zhang, Q., Zheng, Z.: Hydrogen generation by acetic acid steam reforming over Ni-based catalysts derived from La1−xCexNiO3 perovskite. Int. J. Hydrogen Energy. 43, 6795–6803 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.128

    Article  Google Scholar 

  84. Maxwell, J.C.: A treatise on electricity and magnetism. Clarendon press (1873)

  85. Wagner, K.W.: Zur Theorie der unvollkommenen Dielektrika. Ann. Phys. 345, 817–855 (1913). https://doi.org/10.1002/andp.19133450502

    Article  MATH  Google Scholar 

  86. Jonscher, A.K.: The “universal” dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Centre for Advanced Materials Technology of RIT Bangalore for the necessary characterization facilities used in this study. A portion of this research was also performed using facilities at CeNSE, funded by Department of Information Technology, Govt. of India, located at Indian Institute of Science, Bangalore.

Author information

Authors and Affiliations

Authors

Contributions

Shreyas J. Kashyap: conceptualization, validation, formal analysis, investigation, data curation, writing-original draft, writing-reviewing and editing, visualization; Ravi Sankannavar: conceptualization, methodology, validation, resources, visualization; G. M. Madhu: resources, formal analysis.

Corresponding author

Correspondence to Shreyas J. Kashyap.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, S.J., Sankannavar, R. & Madhu, G.M. Synthesis and Characterization of La(Ce, Ba)NiO3 Perovskite-Type Oxides. J Supercond Nov Magn 35, 2107–2118 (2022). https://doi.org/10.1007/s10948-022-06219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06219-3

Keywords

Navigation