Skip to main content
Log in

First-Principle Study on Electronic Structure and Magnetism in Doped MgO Materials

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Based on the first-principle calculations, the electronic structure and magnetic properties of MgO materials (bulk doped with intrinsic defects, transition metal elements Co and Ni; surface doped with non-metallic elements C and N, in addition to Co and Ni) have been systematically investigated. The calculation results show that the oxygen vacancy (VO) in the MgO bulk material cannot make the system spin polarization. When magnesium vacancy (VMg) is introduced, a local magnetic moment of 1.31 μB will be produced, and the magnetic coupling between magnesium vacancies at each distance is ferromagnetic; isolated Co and Ni can produce high-spin states of S = 3/2 and 1, respectively. However, Co–Co are mainly coupled antiferromagnetically at different distances, and the magnetic coupling of Ni–Ni will produce the oscillation phenomenon between FM and AFM states. MgO (001) surface studies reveal that the spin polarization of 2p orbitals of isolated C and N may produce local magnetic states of 0.96 μB and 0.59 μB, respectively. C–C and N–N at different distances are both mainly coupled ferromagnetically. Although one single Co atom will produce a magnetic moment of 1.00 μB on the surface, Co–Co at different distances are mainly antiferromagnetic coupling, while the magnetism is not produced by Ni. Our research is beneficial to the development of spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, X.X., Yang, J.L.: First-principles design of spintronics materials. Natl. Sci. Rev. 3(3), 365–381 (2016). https://doi.org/10.1093/nsr/nww026

    Article  Google Scholar 

  2. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001). https://doi.org/10.1126/science.1065389

    Article  ADS  Google Scholar 

  3. Assefa, G., Singh, P.: Effect of electric filed on magnetic properties of MnxGe1-x diluted magnetic semiconductors. J. Appl. Phys. 10, 15–20 (2016). https://doi.org/10.1007/s40094-015-0195-3

    Article  Google Scholar 

  4. Phan, V., Tran, M.: Spin dynamics in paramagnetic diluted magnetic semiconductors. Phys. Rev. B. 92(155201), 1–6 (2015). https://doi.org/10.1103/PhysRevB.92.155201

    Article  Google Scholar 

  5. Ali, A., Shama, Singh, Y.: Rotating magnetocaloric effect in the ferromagnetic Weyl semi-metal Co3Sn2S2. J. Appl. Phys. 126(155107), 1–6 (2019). https://doi.org/10.1063/1.5120005

  6. Chen, G.X., Fan, X.B., Li, S.Q., Zhang, J.M.: First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Phys. Sin. 68(237303), 1–12 (2019). https://doi.org/10.7498/aps.68.20191246

  7. Araujo, C.M., Kapilashrami, M., Jun, X., Jayakumar, O.D.: Room temperature ferromagnetism in pristine MgO thin films. Appl. Phys. Lett. 96(232505), 1–3 (2010). https://doi.org/10.1063/1.3447376

    Article  Google Scholar 

  8. Coey, J.M.D.: Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 10, 83–92 (2006). https://doi.org/10.1016/j.cossms.2006.12.002

    Article  ADS  Google Scholar 

  9. Li, H.J., Qiao, X.L., Chen, J.G., Wang, W.: Progress in preparation and applications of nano-structured magnesia with different shapes. Mater. Rep. 5(8), 139–142 (2007). https://doi.org/10.3321/j.issn:1005-023X.2007.z1.041

    Article  Google Scholar 

  10. Li, J., Jiang, Y.Z., Li, Y., Yang, D., Xu, Y.B., Yan, M.: Origin of room temperature ferromagnetism in MgO films. Appl. Phys. Lett. 102(072406), 1–4 (2013). https://doi.org/10.1063/1.4793308

    Article  Google Scholar 

  11. Århammar, C., Araujo, C.M., Rao, K.V., Norgren, S., Johansson, B., Ahuja, R.: Energetics and magnetic properties of V-doped MgO bulk and (001) surface: A GGA, GGA+U, and hybrid density functional study. Phys. Rev. B. 82(134406), 1–9 (2010). https://doi.org/10.1103/PhysRevB.82.134406

    Article  Google Scholar 

  12. Wu, H., Stroppa, A., Sakong, S., Picozzi, S., Scheffler, M., Kratzer, P.: Magnetism in C- or N-doped MgO and ZnO: A density-functional study of impurity pairs. Phys. Rev. Lett. 105(267203), 1–4 (2010). https://doi.org/10.1103/PhysRevLett.105.267203

    Article  Google Scholar 

  13. Liu, G.D., Ji, S.L., Yin, L.L., Fei, G.T., Ye, C.H.: An investigation of the electronic properties of MgO doped with group III, IV, and V elements: trends with varying dopant atomic number. J. Phys. Condens. Matter. 22(046002), 1–6 (2010). https://doi.org/10.1088/0953-8984/22/4/046002

    Article  Google Scholar 

  14. Wang, F.G., Pang, Z.Y., Lin, L., Fang, S.J., Dai, Y., Han, S.H.: Magnetism in undoped MgO studied by density functional theory. Phys. Rev. B. 80(144424), 1–7 (2019). https://doi.org/10.1103/PhysRevB.80.144424

  15. Panigrahi, P., Moyses Araujo, C., Hussen, T., Ahuja, R.: Crafting ferromagnetism in Mn-doped MgO surfaces with p-type defects. Sci. Technol. Adv. Mater. 15(035008), 1–9 (2014). https://doi.org/10.1088/1468-6996/15/3/035008

    Article  Google Scholar 

  16. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

  17. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  18. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

  19. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P.: Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B. 57(3), 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505

  20. Luan, H.X., Zhang, C.W., Li, F., Li, P., Ren, M.J., Yuan, M., Ji, W.X., Wang, P.J.: Design of ferromagnetism in Co-doped SnO2 nanosheets: a first-principles study. RSC Adv. 4, 9602–9607 (2014). https://doi.org/10.1039/c3ra46325g

    Article  ADS  Google Scholar 

  21. Wang, H.X., Yan, Y., Du, X.B., Liu, X.Q., Li, Kai., Jin, H.M.: Origin of ferromagnetism in Ni-doped SnO2: First-principles calculation. J. Appl. Phys. 107(103923), 1–4 (2010). https://doi.org/10.1063/1.3428473

  22. Wang, M., Li, H., Ren, J., Gao, L.Y., Feng, T.L., Hao, Z., Yue, Y.L., Zhou, T.G., Hou, D.L.: Ab initio study on electronic structure and magnetic properties of AlN and BP monolayers with Ti doping. Superlattices Microstruct. 158(107010), 1–11 (2021). https://doi.org/10.1016/j.spmi.2021.107010

    Article  Google Scholar 

  23. Xu, L.L., Deng, M.: Dolomite used as raw material to produce MgO-based expansive agent. Cem. Concr. Res. 35, 1480–1485 (2005). https://doi.org/10.1016/j.cemconres.2004.09.026

    Article  Google Scholar 

  24. Wang, M., Tang, S., Hou, D.L., Meng, F.F., Han, Y.L., Ren, J., Wang, B.Z., Zhou, T.G.: Possible origin of ferromagnesium oxide film. Physica B. 590(412214), 1–5 (2020). https://doi.org/10.1016/j.physb.2020.412214

    Article  Google Scholar 

  25. Wang, F.G., Pang, Z.Y., Lin, L., Fang, S.J., Dai, Y., Han, S.H.: Magnetism in undoped MgO studied by density functional theory. Phys. Rev. B. 80(144424), 1–7 (2009). https://doi.org/10.1103/PhysRevB.80.144424

  26. Zhang, Y.F., Liu, H., Wu, J., Zuo, X.: Ab initio study on nitrogen or carbon doped magnesium oxide. IEEE Trans. Magn. 47(10), 2928–2930 (2011). https://doi.org/10.1109/TMAG.2011.2148170

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the project funded by the China Postdoctoral Science Foundation (No. 2018M640245), project funded by the Hebei Province Postdoctoral Science Foundation (No. B2018003013), the Natural Science Foundation of China (No. 51674096), and the Innovation and Entrepreneurship Funding Project for College Students (No. 2020184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Wang, M., Ren, J. et al. First-Principle Study on Electronic Structure and Magnetism in Doped MgO Materials. J Supercond Nov Magn 35, 2037–2045 (2022). https://doi.org/10.1007/s10948-022-06216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06216-6

Keywords

Navigation