Skip to main content
Log in

Critical Behavior in the Fe-Based Antiperovskite Compound AlC1.1Fe3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, the critical behavior of the Fe-based carbide antiperovskite compound AlC1.1Fe3 has been presented. There is a second-order phase transition and the magnetic state will change from ferromagnetic state to paramagnetic state near Curie temperature. Critical exponents (β, γ, δ) representing different significance of magnetism are obtained by separate classical methods, which are exceedingly agreeable with the mean-field model theory, indicating that magnetic behavior of AlC1.1Fe3 is dominated by long-range ferromagnetic coupling. According to the scaling equation m = f ± (h), the experimental data obtained by the two experimental methods roughly overlap on the two curves, which demonstrates the reliability of these fitting parameters, and the convergence of the parameters also conforms to the mean-field model. Besides, the mutual exchange distance J(r) decreases as r−4.695 due to the competitive Fe–Fe metal bond and Fe–C covalent bond. We suggest that the competition between the localized metal bond magnetic interaction and itinerant covalent bond hybridization should be responsible for the critical behavior of AlC1.1Fe3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scholz, T., Dronskowski, R.: Improved ammonolytic synthesis, structure determination, electronic structure, and magnetic properties of the solid solution SnxFe4-xN (0 ≤ x ≤ 0.9). Inorg. Chem. 54, 8800 (2015)

    Article  Google Scholar 

  2. Houben, A., Burghaus, J., Dronskowski, R.: The ternary nitrides GaFe3N and AlFe3N: improved synthesis and magnetic properties. Chem. Mat. 21, 4332–4338 (2009)

    Article  Google Scholar 

  3. Ding, L., Wang, C., Sun, Y., Colin, C.V., Chu, L.H.: Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn3Ni1-xCuxN compounds. J. Appl. Phys. 117, 213915 (2015)

    Article  ADS  Google Scholar 

  4. Wang, B.S., Tong, P., Sun, Y.P., Luo, X., Zhu, X.B., Li, G., Zhu, X.D., Zhang, S.B., Yang, Z.R., Song, W.H., Dai, J.M.: Large magnetic entropy change near room temperature in antiperovskite SnCMn3. Eurphys. Lett. 85, 47004 (2009)

    Article  ADS  Google Scholar 

  5. Toheia, T., Wadaa, H., Kanomata, T.: Large magnetocaloric effect of Mn3-xCoxGaC. J. Magn. Magn. Mater. 272–276, e585–e586 (2004)

    Article  Google Scholar 

  6. Wang, B.S., Tong, P., Sun, Y.P., Li, L.J., Tang, W., Lu, W.J., Zhu, X.B., Yang, Z.R., Song, W.H.: Enhanced giant magnetoresistance in Ni-doped antipervoskite compounds CaCMn3-xNix (x = 0.05, x = 0.10). Appl. Phys. Lett. 95, 222509 (2009)

    Article  ADS  Google Scholar 

  7. Zhang, X.H., Yin, Y., Yuan, Q., Han, J.C., Zhang, Z.H., Jian, J.K., Zhao, J.G., Song, B.: Magnetoresistance reversal in antiperovskite compound Mn3Cu0.5Zn0.5N. J. Appl. Phys. 115, 123905 (2014)

    Article  ADS  Google Scholar 

  8. Takenaka, K., Takagi, H.: Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 87, 261902 (2005)

    Article  ADS  Google Scholar 

  9. Wen, Y.C., Wang, C., Nie, M., Sun, Y., Chu, L.H., Dong, C.: Influence of carbon content on the lattice variation, magnetic and electronic transport properties in Mn3SnCx. Appl. Phys. Lett. 96, 041903 (2010)

    Article  ADS  Google Scholar 

  10. Song, X.Y., Sun, Z.H., Huang, Q.Z., Rettenmayr, M., Liu, X.M., Seyring, M., Li, G.N., Rao, G.H., Yin, F.X.: Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv. Mater. 23, 4690 (2011)

    Article  Google Scholar 

  11. Zhang, X.H., Yuan, Q., Han, J.C., Zhao, J.G., Jian, J.K., Zhang, Z.H., Song, B.: Observation of spin-glass behavior in antiperovskite compound Mn3Cu0.7Ga0.3N. Appl. Phys. Lett. 103, 022405 (2013)

    Article  ADS  Google Scholar 

  12. Kan, X.C., Wang, B.S., Zhang, L., Zu, L., Lin, S., Lin, J.C., Tong, P., Song, W.H., Sun, Y.P.: Critical behavior in tetragonal antiperovskite GeNFe3 with a frustrated ferromagnetic state. Phys. Chem. Chem. Phys. 19, 13703 (2017)

    Article  Google Scholar 

  13. Fan, J.Y., Ling, L.S., Hong, B., Zhang, L., Pi, L., Zhang, Y.H.: Critical properties of the perovskite manganite La0.1Nd0.6Sr0.3MnO3. Phys. Rev. B 81, 144426 (2010)

    Article  ADS  Google Scholar 

  14. Ghosh, K., Lobb, C.J., Greene, R.L., Karabashev, S.G., Shulyatev, D.A., Arsenov, A.A., Mukovskii, Y.: Critical phenomena in the double-exchange ferromagnet La0.7Sr0.3MnO3. Phys. Rev. Lett. 81, 4740 (1998)

    Article  ADS  Google Scholar 

  15. Zhang, L., Fan, J.Y., Li, L., Li, R.W., Ling, L.S., Qu, Z., Tong, W., Tan, S., Zhang, Y.H.: Critical properties of the 3D-Heisenberg ferromagnet CdCr2Se4. Eurphys. Lett. 91, 57001 (2010)

    Article  ADS  Google Scholar 

  16. Wang, B.S., Lin, J.C., Tong, P., Zhang, L., Lu, W.J., Zhu, X.B., Yang, Z.R., Song, W.H., Dai, J.M., Sun, Y.P.: Structural, magnetic, electrical transport properties, and reversible room-temperature magnetocaloric effect in antipervoskite compound AlCMn3. J. Appl. Phys. 108, 093925 (2010)

    Article  ADS  Google Scholar 

  17. Zhang, L., Wang, B.S., Sun, Y.P., Tong, P., Fan, J.Y., Zhang, C.J., Pi, L., Zhang, Y.H.: Critical behavior in the antiperovskite ferromagnet AlCMn3. Phys. Rev. B 85, 104419 (2012)

    Article  ADS  Google Scholar 

  18. Tong, P., Sun, Y.P., Zhao, B.C., Zhu, X.B., Song, W.H.: Influence of carbon concentration on structural, magnetic and electrical transport properties for antiperovskite compounds AlCxMn3. Solid State Commun. 138, 64–67 (2006)

    Article  ADS  Google Scholar 

  19. Gil Rebaza, A.V., Mudarra Navarro, A.M., Martinez, J., Peltzer y Blanca, E.L.: First principles and experimental studies of the structural and magnetic ground state of the ternary compound MnFe3N. J. Alloys Compd. 683, 32–37 (2016)

    Article  Google Scholar 

  20. Wu, H., Sun, H., Chen, C.F.: Superior magnetic and mechanical property of MnFe3N driven by electron, correlation and lattice anharmonicity. Phys. Rev. B 91, 064102 (2015)

    Article  ADS  Google Scholar 

  21. Grandjean, F., Gerard, A.: Study by Mossbauer spectroscopy of the series of perovskite carbides M3M’C with M = Fe or Mn, and M’ = Al, Ga, Ge, Zn, Sn. J. Phys. F. 6, 451 (1976)

    Article  ADS  Google Scholar 

  22. Lin, S., Wang, B.S., Hu, X.B., Lin, J.C., Huang, Y.N., Jian, H.B., Lu, W.J., Zhao, B.C., Tong, P., Song, W.H., Sun, Y.P.: The structural, magnetic, electrical/thermal transport properties and reversible magnetocaloric effect in Fe-based antipervoskite compound AlC1.1Fe3. J. Magn. Magn. Mater. 324, 3267–3271 (2012)

    Article  ADS  Google Scholar 

  23. Pecharsky, V.K., Gschneidner, K.A., Jr.: Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999)

    Article  ADS  Google Scholar 

  24. Connetable, D., Maugis, P.: First principle calculations of the κ-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics 16, 345 (2008)

    Article  Google Scholar 

  25. Khan, N., Midya, A., Mydeen, K., Mandal, P., Loidl, A., Prabhakaran, D.: Critical behavior in single-crystalline La0.67Sr0.33CoO3. Phys. Rev. B 82, 064422 (2010)

    Article  ADS  Google Scholar 

  26. Stanley, H.E.: Introduction to phase transitions and critical phenomena. Oxford University press, London (1971)

  27. Fisher, M.E.: The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30, 615 (1967)

    Article  ADS  Google Scholar 

  28. Arrott, A., Noakes, J.: Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786 (1967)

    Article  ADS  Google Scholar 

  29. Kaul, S.N.: Static critical phenomena in ferromagnets with quenched disorder. J. Magn. Magn. Mater. 53, 5 (1985)

    Article  ADS  Google Scholar 

  30. Banerjee, B.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)

    Article  ADS  Google Scholar 

  31. Kouvel, J.S., Fisher, M.E.: Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. A 136, A1626 (1964)

    Article  ADS  Google Scholar 

  32. Kadanoff, L.P.: Scaling laws for Ising models near T(c). Physics 2, 263 (1966)

    Article  MathSciNet  Google Scholar 

  33. Perumal, A., Srinivas, V., Rao, V.V., Dunlap, R.A.: Quenched disorder and the critical behavior of a partially frustrated system. Phys. Rev. Lett. 91, 137202 (2003)

    Article  ADS  Google Scholar 

  34. Fisher, M.E., Ma, S.K., Nickel, B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917 (1972)

    Article  ADS  Google Scholar 

  35. Fischer, S.F., Kaul, S.N., Kronmuller, H.: Critical magnetic properties of disordered polycrystalline Cr75Fe25 and Cr70Fe30 alloys. Phys. Rev. B 65, 064443 (2002)

    Article  ADS  Google Scholar 

  36. Pramanik, A.K., Banerjee, A.: Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3. A bulk magnetization study. Phys. Rev. B 79, 214426 (2009)

    Article  ADS  Google Scholar 

  37. Saadi, A., Moubah, R., Lassri, H., El Amiri, A., Boughaleb, Y., Bimaghra, I., Hlil, E.K.: Magnetic and electronic properties of Fe/C multilayers: interfacial effects. Physica A 516, 340–345 (2019)

    Article  ADS  Google Scholar 

  38. Huang, K.: Statistical mechanics, 2nd edn. Wiley, New York (1987)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No, 51872004), Open fund for Discipline Construction, Institutes of Physical Science and Information Technology, Education Department of Anhui Province (No. KJ2019ZD03), the Key Program of the Science and Technology Department of Anhui Province (No. 201904a05020038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Lin or Xucai Kan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Liu, X., Dai, Z. et al. Critical Behavior in the Fe-Based Antiperovskite Compound AlC1.1Fe3. J Supercond Nov Magn 35, 1921–1928 (2022). https://doi.org/10.1007/s10948-022-06205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06205-9

Keywords

Navigation