Skip to main content
Log in

Suppressed Superconductivity in Ultrathin Mo2N Films due to Pair-Breaking at the Interface

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A strong disorder characterized by a small product of the Fermi vector kF and the electron mean free l drives superconductors towards insulating state. Such disorder can be introduced by making the films very thin. Here, we present 3-nm Mo2N film with kF*l ~ 2 with a resistive superconducting transition temperature Tc = 2 K heavily suppressed in comparison with the bulk Tc. Superconducting density of states (DOS) with smeared gap-like peaks and in-gap states, so called Dynes DOS, is observed by the low-temperature tunneling spectroscopy despite a sharp resistive transition. By scanning tunneling microscope, the spectral maps are obtained and related to the surface topography. The maps show a spatial variation of the superconducting energy gap on the order of 20% which is not accidental but well correlates with the surface corrugation: protrusions reveal larger gap, smaller spectral smearing, and smaller in-gap states. In agreement with our previous measurements on ultrathin MoC films, we suggest that the film-substrate interface introducing the local pair-breaking is responsible for the observed effects and generally for the suppression of the superconductivity in these ultrathin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Finkel’stein,  A.M.: Superconducting transition temperature in amorphous films. JETP Lett. 45, 46 (1987)

  2. Fisher, M.P.A.: Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–927 (1990). https://doi.org/10.1103/PhysRevLett.65.923

    Article  ADS  Google Scholar 

  3. Sacépé, B., Chapelier, C., Baturina, T.I., Vinokur, V.M., Baklanov, M.R., Sanquer, M.: Disorder-Induced Inhomogeneities of the Superconducting State Close to the Superconductor-Insulator Transition. Phys. Rev. Lett. 101, 157006 (2008). https://doi.org/10.1103/PhysRevLett.101.157006

    Article  ADS  Google Scholar 

  4. Hofer, J.A., Ginzburg, M., Bengio, S., Haberkorn, N.: Nanocrystalline superconducting γ-Mo2N ultra-thin films for single photon detectors. Mater Sci Eng B. 275, 115499 (2022). https://doi.org/10.1016/J.MSEB.2021.115499

    Article  Google Scholar 

  5. Kuzmiak, M., et al.: to be published

  6. Dynes, R.C., Narayanamurti, V., Garno, J.P.: Direct Measurement of Quasiparticle-Lifetime Broadening in a Strong-Coupled Superconductor. Phys. Rev. Lett. 41, 1509 (1978). https://doi.org/10.1103/PhysRevLett.41.1509

    Article  ADS  Google Scholar 

  7. Hašková, V., Kopčík, M., Szabó, P., Samuely, T., Kačmarčík, J., Onufriienko, O., Žemlička, M., Neilinger, P., Grajcar, M., Samuely, P.: On the origin of in-gap states in homogeneously disordered ultrathin films. MoC case. Appl. Surf. Sci. 461, 143–148 (2018). https://doi.org/10.1016/J.APSUSC.2018.06.228

    Article  ADS  Google Scholar 

  8. Kozejova, M., Latyshev, V., Kavecansky, V., You, H., Vorobiov, S., Kovalcikova, A., Komanicky, V.: Evaluation of hydrogen evolution reaction activity of molybdenum nitride thin films on their nitrogen content. Electrochim. Acta. 315, 9–16 (2019). https://doi.org/10.1016/J.ELECTACTA.2019.05.097

    Article  Google Scholar 

  9. van der Pauw, L.J.: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  10. Ioffe, A.F., Regel, A.R.: Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond. 4, 237–291 (1960)

    Google Scholar 

  11. Hamers, R.J., Tromp, R.M., Demuth, J.E.: Surface Electronic Structure of Si (111)-(7×7) Resolved in Real Space. Phys. Rev. Lett. 56, 1972 (1986). https://doi.org/10.1103/PhysRevLett.56.1972

    Article  ADS  Google Scholar 

  12. Gantmakher, V.F., Dolgopolov, V.T.: Superconductor–insulator quantum phase transition. Phys.-Usp. 53, 1 (2010). https://doi.org/10.3367/UFNE.0180.201001A.0003

    Article  ADS  Google Scholar 

  13. Altshuler, B.L., Aronov, A.G.: Electron-Electron Interaction In Disordered Conductors. 10, 1–153 (1985). https://doi.org/10.1016/B978-0-444-86916-6.50007-7

    Article  Google Scholar 

  14. Szabó, P., Samuely, T., Hašková, V., Kačmarčík, J., Žemlička, M., Grajcar, M., Rodrigo, J.G., Samuely, P.: Fermionic scenario for the destruction of superconductivity in ultrathin MoC films evidenced by STM measurements. Phys. Rev. B. 93, 014505 (2016). https://doi.org/10.1103/PhysRevB.93.014505

    Article  ADS  Google Scholar 

  15. Samuely, P., Szabó, P., Klein, T., Jansen, A.G.M., Marcus, J., Escribe-Filippini, C., Wyder, P.: Upper critical field in Ba1-xKxBiO3: Magnetotransport vs. magnetotunneling. EPL. 41, 207–212 (1998). https://doi.org/10.1209/EPL/I1998-00132-1

  16. Herman, F., Hlubina, R.: Microscopic interpretation of the Dynes formula for the tunneling density of states. Phys. Rev. B. 94, 144508 (2016). https://doi.org/10.1103/PhysRevB.94.144508

    Article  ADS  Google Scholar 

  17. Proslier, T., Zasadzinski, J.F., Cooley, L., Antoine, C., Moore, J., Norem, J., Pellin, M., Gray, K.E.: Tunneling study of cavity grade Nb: Possible magnetic scattering at the surface. Appl. Phys. Lett. 92, 212505 (2008). https://doi.org/10.1063/1.2913764

    Article  ADS  Google Scholar 

  18. Sundaresan, A., Rao, C.N.R.: Implications and consequences of ferromagnetism universally exhibited by inorganic nanoparticles. Solid State Commun. 149, 1197–1200 (2009). https://doi.org/10.1016/J.SSC.2009.04.028

    Article  ADS  Google Scholar 

  19. Li, Q., Xu, J., Liu, J., Du, H., Ye, B.: Rise and fall of ferromagnetism in O-irradiated Al2O3 single crystals. Int. J. Appl. Phys. 117, 233904 (2015). https://doi.org/10.1063/1.4922788

    Article  ADS  Google Scholar 

  20. Tamir, I., Trahms, M., Gorniaczyk, F., von Oppen, F., Shahar, D., Franke, K.J.: Direct observation of intrinsic surface magnetic disorder in amorphous superconducting films. arXiv:2112.05430. (2021)

Download references

Acknowledgements

We gratefully acknowledge helpful conversations with M. Grajcar and R. Hlubina.

Funding

This work was supported by the projects APVV-18–0358, VEGA 2/0058/20, VEGA 1/0743/19 the European Microkelvin Platform, the COST action CA16218 (Nanocohybri), and by US Steel Košice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Samuely.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmiak, M., Kopčík, M., Košuth, F. et al. Suppressed Superconductivity in Ultrathin Mo2N Films due to Pair-Breaking at the Interface. J Supercond Nov Magn 35, 1775–1780 (2022). https://doi.org/10.1007/s10948-022-06197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06197-6

Keywords

Navigation