Skip to main content
Log in

The Synthesis of MnBi2Te4 Antiferromagnetic Topological Insulator Single Crystals Through a One-Step Growth Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

MnBi2Te4 has been predicted and observed to be a novel antiferromagnetic topological insulator. However, the melting temperatures of MnBi2Te4 and Bi2Te3 are similar, and they cannot be easily separated. Therefore, single crystal growth techniques need to be optimized. One common method is to grow crystals from a 1:5 mixture of MnTe and Bi2Te3 precursors, but directly mixing Mn, Bi, and Te powders in a stoichiometric ratio has also been implemented experimentally. In this work, we successfully grew high-quality MnBi2Te4 single crystals with a one-step growth method, providing a simpler method and a shorter growth time for high-quality single crystals. The optimized crystal growth condition was using a cooling rate of 0.5 °C/h in the second cooling stage. Different measurements indicated that the synthesized crystals were pure and composed of MnBi2Te4. Furthermore, magnetotransport measurements showed that the AFM phase transition occurred at TN = 25.6 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morimoto, T., Furusaki, A.: Topological insulators and superconductors. Phys. Rev. B. 89, 035117 (2014)

  2. Chiu, C.K., Teo, J.C.Y., Schnyder, A. P.: Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016)

  3. Armitage, N.P., Mele, E.J., Vishwanath, A.: Weyl and dirac semimetals in three dimensional solids. Rev. Mod. Phys. 90, 015001 (2017)

  4. Chang, C.Z., Zhang, J., Feng, X.: Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science. 340, 167–170 (2013)

  5. Yu, R., Wei, Z., Zhang, H.J.: Quantized anomalous hall effect in magnetic topological insulators. Science 329, 61–64 (2010)

    Article  ADS  Google Scholar 

  6. Hai, J., Zhang, Y.: Quantum spin hall and quantum anomalous hall states realized in junction quantum wells. Phys. Rev. Lett. 112, 216803–216803 (2014)

    Article  ADS  Google Scholar 

  7. Chang, C.Z., Zhao, W., Kim, D.Y.: High-precision realization of robust quantum anomalous hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473 (2014)

    Article  ADS  Google Scholar 

  8. Xiao, D., Jiang, J., Shin, J.H.: Realization of the axion insulator state in quantum anomalous hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018)

  9. Mogi, M., Kawamura, M., Yoshimi, R.: A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017)

    Article  ADS  Google Scholar 

  10. Hua, G., Nie, S., Song, Z.: Dirac semimetal in type-IV magnetic space groups. Phys. Rev. B. 98, 201116 (2018)

  11. Otrokov, M.M., Klimovskikh, I.I., Bentmann, H.: Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019)

    Article  ADS  Google Scholar 

  12. Rienks, E., Wimmer, S., Sánchez-Barriga, J.: Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 576, 423–428 (2019)

    Article  ADS  Google Scholar 

  13. Liu, C., Wang, Y., Li, H.: Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 1–6 (2010)

    ADS  Google Scholar 

  14. Otrokov, M.M., Rusinov, I.P., Blanco-Rey, M.: Unique thickness-dependent properties of the van der waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019)

  15. Zhang, D., Shi, M., Zhu, T.: Topological axion states in the magnetic insulator mnbi2te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122. 206401.1–206401.6 (2019)

  16. Wang, J., Lian, B., Zhang, S.C.: Quantum anomalous hall effect in magnetic topological insulators. Phys. Scripta. T164, 300–301 (2014)

    Google Scholar 

  17. Kou, X., He, L., Lang, M., Fan, Y., Wong, K., Jiang, Y., Nie, T., Jiang, W., Xing, Z., Wang, Y., Xiu, F.: Manipulating surface-related ferromagnetism in modulated-doped topological insulators. Nano. Lett. 13, 4587–4593 (2013)

    Article  ADS  Google Scholar 

  18. Yoshimi, R., Yasuda, K., Tsukazaki, A., Takahashi, K, S., Nagaosa, N., Kawasaki, M., Tokura, Y.: Quantum Hall states stabilized in semi-magnetic bilayers of topological insulators. Nat. Commun. 6, 8530 (2015)

  19. Mogi, M., Yoshimi, R., Tsukazaki, A., Yasuda, K., Kozuka, Y., Takahashi, Kawasaki, K.S., Tokura, M.: Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. App. Phys. Lett. 107, 182401 (2015)

  20. Ge, J., Liu, Y., Li, J.: High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl. Sci. Rev. 7, 1280–1287 (2020)

    Article  Google Scholar 

  21. Li, J., Li, Y., Du, S.: Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, 5685 (2019)

    Article  ADS  Google Scholar 

  22. Zeugner, A., Nietschke, F.: Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater. 31, 2795–2806 (2019)

    Article  Google Scholar 

  23. Yan, J.Q., Zhang, Q., Heitmann, T.: Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019)

  24. Aliev, Z.S., Amiraslanov, I.R., Nasonova, D.I.: Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: synthesis and crystal structure. J. Alloy. Compd. 789, 443–450 (2019)

    Article  Google Scholar 

  25. Zhang, D., Shi, M., Zhu, T.: Topological axion states in the magnetic insulator mnbi2te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401.1–206401.6 (2019)

  26. Li, H., Liu, S., Liu, C.: Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties. Phys. Chem. Chem. Phys. 22, 556–563 (2019)

    Article  Google Scholar 

  27. Chen, K.Y., Wang, B.S., Yan, J.Q.: Suppression of the antiferromagnetic metallic state in the pressurized MnBi2Te4 single crystal. Phys. Rev. Mater. 3, 094201 (2019)

  28. Jia, B., Zhang, S., Ying, Z.: Unconventional anomalous Hall effect in magnetic topological insulator MnBi4Te7 device. App. Phys. Lett. 118, 083101 (2021)

  29. Shi, M.Z., Lei, B., Zhu, C.S.: Magnetic and transport properties in magnetic topological insulators MnBi2Te4 (Bi2Te3)n (n=1, 2). Phys. Rev. B. 100, 155144 (2019)

  30. Rani, P., Saxena, A., Sultana, R.: Crystal growth and basic transport and magnetic properties of MnBi2Te4. J Supercond. Nov. Magn. 32, 3705–3709 (2019)

    Article  Google Scholar 

  31. Lee, S.H., Zhu, Y., Wang, Y.: Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1, 012011 (2018)

  32. Polat, B.D., Keles, O.: The use of well-aligned composite nanorod arrays as anode material for lithium rechargeable batteries. J. Power. Sources. 266, 353–364 (2014)

    Article  ADS  Google Scholar 

  33. Lakhani., Archana., Kumar.: Observation of quantum Hall effect in a microstrained Bi2Se3 single crystal. Mater. Res. Bull. 88, 127–130 (2017)

  34. Cui, J., Shi, M., Wang, H.: Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B. 99, 155125.1–155125.6 (2019)

  35. Chen, Y.J., Xu, L.X., Li, J.H., Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X. 9, 041040 (2019)

  36. Zhu, P.F., Ye, X.G., Fang, J.Z.: From negative to positive magnetoresistance in the intrinsic magnetic topological insulator MnBi2Te4. Phys. Rev. B. 101, 075425 (2020)

  37. Shahi, P.J.S.D., Sun, J.: Bipolar conduction is the origin of the electronic transition in pentatellurides: metallic vs. semiconducting behavior. Phys. Rev. X. 8, 021055 (2016)

  38. Canfield, P.C., Kong, T., Kaluarachchi, U.S.: Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples. Philos. Mag. 96, 84–92 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. S. Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Zhao, K., Yang, X.S. et al. The Synthesis of MnBi2Te4 Antiferromagnetic Topological Insulator Single Crystals Through a One-Step Growth Method. J Supercond Nov Magn 35, 1221–1228 (2022). https://doi.org/10.1007/s10948-022-06175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06175-y

Keywords

Navigation