Skip to main content
Log in

Exploring Magnetic Behaviour in La0.70Pr0.30Mn0.8Co0.2O3 Perovskite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This work aims to understand the magnetic behaviour in the La0.70Pr0.30Mn0.8Co0.2O3 perovskite sample. The sample was prepared by a solid-state reaction. The Rietveld refinement gives orthorhombic crystal structure with lattice constants, i.e. a = 5.4928(5) Å, b = 7.7683(7) Å, and c = 5.5148(5) Å. The magnetization shows the ferromagnetic to paramagnetic transition. The blocking temperature (TB = 151 K) and paramagnetic Curie temperature (θp = 189 K) have been found by the magnetization versus temperature (M-T) curves. The blocking temperature indicates the interaction between internal magnetic energy and thermal energy. This interaction can also be clearly seen in the coinciding temperature (Tcon). The scaling law also supports the paramagnetic Curie temperature. The derivative of M-T curves shows a magnetic phase transition at 163 K temperature. The M-H loops show the ferromagnetic nature at a lower temperature and paramagnetic at room temperature which supports our M-T results. The Tg (spin-glass transition) decreases with increasing field. The Kneller’s fitting gives the TB = 176 K. The loop squareness value is decreasing with increasing temperatures. The peak width (2Hm) suggests that magnetic domains exist in the sample at lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Skumryev, V., Ott, F., Coey, J.M.D., Anane, A., Renard, J.-P., Pinsard-Gaudart, L., Revcolevschi, A.: Weak ferromagnetism in LaMnO 3. Eur. Phys. J. B 11(3), 401–406 (1999)

    ADS  Google Scholar 

  2. Guth, U.: Kröger-Vinks notation of point defects. In: Kreysa G., Ota K., Savinell R.F. (eds.) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. (2014). https://doi.org/10.1007/978-1-4419-6996-5_310

  3. Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82(3), 403 (1951)

    Article  ADS  Google Scholar 

  4. Jonker, G.H.: Magnetic and semiconducting properties of perovskites containing manganese and cobalt. J. Appl. Phys. 37(3), 1424–1430 (1966)

    Article  ADS  Google Scholar 

  5. Burnus, T., Hu, U.Z., Hsieh, H.H.H., Joly, V.L.J., Joy, P.A., Haverkort, M.W., Wu, H., et al.: Local electronic structure and magnetic properties of La Mn 0.5 Co 0.5 O 3 studied by X-ray absorption and magnetic circular dichroism spectroscopy. Phys. Rev. B 77(12), 125124 (2008)

    Article  ADS  Google Scholar 

  6. Choudhary, B.L., Krishnamurthy, A., Srivastava, B.K.: Magnetic behaviour of bismuth substituted perovskites La 1− x Bi x Mn 0.8 Co 0.2 O 3. In AIP Conference Proceedings, vol. 1313, no. 1, pp. 307–309. American Institute of Physics, (2010)

  7. Kaushik, A., Dalela, B., Rathore, R., Vats, V.S., Choudhary, B.L., Alvi, P.A., Kumar, S., Dalela, S.: Influence of Co doping on the structural, optical and magnetic properties of ZnO nanocrystals. J. Alloys Compd. 578, 328–335 (2013)

    Article  Google Scholar 

  8. Lal, G., Punia, K., Dolia, S.N., Alvi, P.A., Choudhary, B.L., Kumar, S.: Structural, cation distribution, optical and magnetic properties of quaternary Co0.4+xZn0.6-xFe2O4 (x = 0.0, 0.1 and 0.2) and Li doped quinary Co0.4+xZn0.5-xLi0.1Fe2O4 (x = 0.0, 0.05 and 0.1) nanoferrites. J. Alloys Compd. 828, 154388 (2020). https://doi.org/10.1016/j.jallcom.2020.154388

    Article  Google Scholar 

  9. Lal, G., Punia, K., Bhoi, H., Dolia, S.N., Choudhary, B.L., Alvi, P.A., Dalela, S., Barbar, S.K., Kumar, S.: Exploring the structural, elastic, optical, dielectric and magnetic characteristics of Ca2+ incorporated superparamagnetic Zn0. 5− xCa0. 1Co0 4+ xFe2O4 (x= 0.0, 0.05 & 0.1) nanoferrites. J. Alloys Compd 886, 161190 (2021). https://doi.org/10.1016/j.jallcom.2021.161190

    Article  Google Scholar 

  10. Barilo, S.N., Gatalskaya, V.I., Shiryaev, S.V., Kurochkin, L.A., Ustinovich, S.N., Szymczak, H., Szymczak, R., Baran, M.: Magnetic behavior of single crystalsof the perovskite oxides LaMn1− xCoxO3. Phys. Status. Solidi. A 199(3), 484–490 (2003)

    Article  ADS  Google Scholar 

  11. Goodenough, J.B., Wold, A., Arnott, R.J., Menyuk, N.J.P.R.: Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn 3+. Phys. Rev. 124(2), 373 (1961)

    Article  ADS  Google Scholar 

  12. Troyanchuk, I.O., Lobanovsky, L.S., Khalyavin, D.D., Pastushonok, S.N., Szymczak, H.: Magnetic and magnetotransport properties of Co-doped manganites with perovskite structure. J. Magn. Magn. Mater. 210(1–3), 63–72 (2000)

    Article  ADS  Google Scholar 

  13. Park, J.-H., Cheong, S.W., Chen, C.T.: Double-exchange ferromagnetism in La (Mn 1–x Co x) O 3. Phys. Rev. B 55(17), 11072 (1997)

    Article  ADS  Google Scholar 

  14. Radwański, R.J., Ropka, Z.: Magnetism and electronic structure of LaMnO3 and LaCoO3. Physica B 281, 507–509 (2000)

    Article  ADS  Google Scholar 

  15. Gayathri, N., Raychaudhuri, A.K., Tiwary, S.K., Gundakaram, R., Arulraj, A., Rao, C.N.R.: Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: a study of the La 0.7 Ca 0.3 Mn 1–x Co x O 3 system. Phys. Rev. B 56(3), 1345 (1997)

    Article  ADS  Google Scholar 

  16. Samoilov, A.V., Beach, G., Fu, C.C., Yeh, N.-C., Vasquez, R.P.: Giant spontaneous Hall effect and magnetoresistance in La 1–x Ca x CoO 3 (0.1⩽ x⩽ 0.5). J. Appl. Phys. 83(11), 6998–7000 (1998)

    Article  ADS  Google Scholar 

  17. Golovanov, V., Mihaly, L., Moodenbaugh, A.R.: Magnetoresistance in La 1–x Sr x CoO 3 for 0.05⩽ x⩽ 0.25. Phys. Rev. B 53(13), 8207 (1996)

    Article  ADS  Google Scholar 

  18. Xiong, Y.M., Lu, Y.R., Luo, X.G., Zhang, Y., Li, P.H., Huang, L., Chen, X.H.: Magnetoresistance and field-induced spin-state transition of Pr and Nd substituted La0. 5Sr0. 5CoO3. J. Magn. Magn. Mater. 299(1), 188–194 (2006)

    Article  ADS  Google Scholar 

  19. Anisimov, V.I., Elfimov, I.S., Korotin, M.A., Terakura, K.: Orbital and charge ordering in Pr 1–x Ca x MnO 3 (x= 0 and 0.5) from the ab initio calculations. Phys. Rev. B 55(23), 15494 (1997)

    Article  ADS  Google Scholar 

  20. Kobayashi, Y., Nakajima, T., Asai, K.: Magnetic and transport properties in La1− xPrxCoO3 single crystals. J. Magn. Magn. Mater. 272, 83–84 (2004)

    Article  ADS  Google Scholar 

  21. Tsubouchi, S., Kyomen, T., Itoh, M., Oguni, M.: Electric, magnetic, and calorimetric properties and phase diagram of Pr 1− x Ca x CoO 3 (0<~ x<~ 0. 5 5). Phys. Rev. B 69(14), 144406 (2004)

    Article  ADS  Google Scholar 

  22. Thaker, C.M., Rayaprol, S., Mavani, K., Rana, D.S., Sahasrabudhe, M.S., Patil, S.I., Kuberkar, D.G.: Effect of Pr-Ca substitution on the transport and magnetic behavior of LaMnO 3 perovskite. Pramana 58(5), 1035–1039 (2002)

    Article  ADS  Google Scholar 

  23. Yoshimatsu, K., Wadati, H., Sakai, E., Harada, T., Takahashi, Y., Harano, T., Shibata, G., et al.: Spectroscopic studies on the electronic and magnetic states of Co-doped perovskite manganite Pr 0.8 Ca 0.2 Mn 1− y Co y O 3 thin films. Phys. Rev. B 88(17), 174423 (2013)

    Article  ADS  Google Scholar 

  24. Harada, T., Ohkubo, I., Lippmaa, M., Matsumoto, Y., Sumiya, M., Koinuma, H., Oshima, M.: Modulation of the ferromagnetic insulating phase in Pr {sub 0.8} Ca {sub 0.2} MnO {sub 3} by Co substitution. Phys. Status Solidi RRL 5, (2011)

  25. Choudhary, B. L., Kumar, S., Krishnamurthy, A., Srivastava, B.K.: Magnetic behaviour of praseodymium substituted perovskites La 1-x Pr x Mn 0.8 Co 0.2 O 3. In AIP Conference Proceedings, vol. 1536, no. 1, pp. 991–992. American Institute of Physics, (2013)

  26. Lal, G., Joshi, J., Bhoi, H., Punia, K., Dolia, S.N., Choudhary, B.L., Barbar, S.K., Kumar, S.: Impact of hydrogenation on the structural, dielectric and magnetic properties of La 0.5 Ca 0.5 MnO 3. Appl. Phys. A 127(2), 1–11 (2021). https://doi.org/10.1007/s00339-020-04206-w

    Article  Google Scholar 

  27. Dyakonov, V., Duraj, R.: Structural and magnetic properties of La1-xPrxMnO3+ delta (0. (2006)

  28. Choudhary, B.L., Kumari, N., Kumari, J., Kumar, A., Dolia, S.N.: Relaxation mechanism in Ni0 5Zn0 5Fe2O4 Nanocrystalline ferrite at a lower temperature. Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2021.130731

    Article  Google Scholar 

  29. Lin, S., Shao, D.F., Lin, J.C., Zu, L., Kan, X.C., Wang, B.S., Huang, Y.N., et al.: Spin-glass behavior and zero-field-cooled exchange bias in a Cr-based antiperovskite compound PdNCr 3. J. Mater. Chem. C 3(22), 5683–5696 (2015)

    Article  Google Scholar 

  30. Kinnari, P., Upadhyay, R.V., Mehta, R.V.: Magnetic properties of Fe–Zn ferrite substituted ferrofluids. J. Magn. Magn. Mater. 252, 35–38 (2002)

    Article  ADS  Google Scholar 

  31. Kawano, H., Kajimoto, R., Yoshizawa, H., Tomioka, Y., Kuwahara, H., Tokura, Y.: Magnetic ordering and relation to the metal-insulator transition in Pr 1–x Sr x MnO 3 and Nd 1–x Sr x MnO 3 with x∼ 1/2. Phys. Rev. Lett. 78(22), 4253 (1997)

    Article  ADS  Google Scholar 

  32. Duan, P., Chen, Z., Dai, S., Zhou, Y., Huibin, Lu., Jin, K., Cheng, B.: La 0.7 Pr 0.3 MnO 3 ceramic: an electron-doped colossal magnetoresistive manganite. Appl. Phys. Lett. 84(23), 4741–4743 (2004)

    Article  ADS  Google Scholar 

  33. Phong, P.T., Ngan, L.T.T., Bau, L.V., Phuc, N.X., Nam, P.H., Phong, L.T.H., Dang, N.V., Lee, I.-J.: Magnetic field dependence of Griffith phase and critical behavior in La0. 8Ca0. 2MnO3 nanoparticles. J. Magn. Magn. Mater. 475, 374–381 (2019)

    Article  ADS  Google Scholar 

  34. Knobel, M., Nunes, W.C., Winnischofer, H., Rocha, T.C.R., Socolovsky, L.M., Mayorga, C.L., Zanchet, D.: Effects of magnetic interparticle coupling on the blocking temperature of ferromagnetic nanoparticle arrays. J. Non-Cryst. Solids 353(8–10), 743–747 (2007)

    Article  ADS  Google Scholar 

  35. Phan, M.-H., Alonso, J., Khurshid, H., Lampen-Kelley, P., Chandra, S., Stojak Repa, K., Nemati, Z., Das, R., Iglesias, Ó., Srikanth, H.: Exchange bias effects in iron oxide-based nanoparticle systems. Nanomaterials 6(11), 221 (2016)

    Article  Google Scholar 

  36. Flaifel, M.H., Ahmad, S.H., Abdullah, M.H., Al-Asbahi, B.A.: NiZn ferrite filled thermoplastic natural rubber nanocomposites: effect of low temperature on their magnetic behaviour. Cryogenics 52(10), 523–529 (2012)

    Article  ADS  Google Scholar 

  37. Palai, R., Huhtinen, H., Scott, J.F., Katiyar, R.S.: Observation of spin-glass-like behavior in SrRuO 3 epitaxial thin films. Phys. Rev. B 79(10), 104413 (2009)

    Article  ADS  Google Scholar 

  38. Ziese, M.: Critical scaling and percolation in manganite films. J. Phys. Condens. Matter 13(13), 2919 (2001)

    Article  ADS  Google Scholar 

  39. Sow, C., Samal, D., Kumar, P.A., Bera, A.K., Yusuf, S.M.: Structural-modulation-driven low-temperature glassy behavior in SrRuO 3. Phys. Rev. B 85(22), 224426 (2012)

    Article  ADS  Google Scholar 

  40. Padmanabhan, B., Bhat, H.L., Elizabeth, S., Rößler, S., Rößler, U.K., Dörr, K., Müller, K.H.: Critical properties in single crystals of Pr 1–x Pb x Mn O 3. Phys. Rev. B 75(2), 024419 (2007)

    Article  ADS  Google Scholar 

  41. Kim, D., Zink, B.L., Hellman, F., Coey, J.M.D.: Critical behavior of La 075 Sr 025 MnO 3. Phys. Rev. B 65(21), 214424 (2002)

    Article  ADS  Google Scholar 

  42. Lefloch, F., Hammann, J., Ocio, M., Vincent, E.: Spin glasses in a magnetic field: phase diagram and dynamics. Physica B 203(1–2), 63–74 (1994)

    Article  ADS  Google Scholar 

  43. Hansen, M.F., Mørup, S.: Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater. 203(1–3), 214–216 (1999)

    Article  ADS  Google Scholar 

  44. Svedberg, M., Majumdar, S., Huhtinen, H., Paturi, P., Granroth, S.: Optimization of Pr0. 9Ca0. 1MnO3 thin films and observation of coexisting spin-glass and ferromagnetic phases at low temperature. J. Phys. Condens. Matter 23(38), 386005 (2011)

    Article  ADS  Google Scholar 

  45. Choudhary, B. L., Garima, Hasan, P. M. Z., Darwesh, R., Kumar, S., Dalela, S., Dolia, S. N., Alvi, P. A.: Low temperature field dependent magnetic study of the Zn0. 5Co0. 5Fe2O4 nanoparticles. J. Magn. Magn. Mater. 168102 (2021). https://doi.org/10.1016/j.jmmm.2021.168102

  46. Choudhary, B.L., Kumar, U., Kumar, S., Chander, S., Kumar, S., Dalela, S., Dolia, S.N., Alvi, P.A.: Irreversible magnetic behavior with temperature variation of Ni0. 5Co0. 5Fe2O4 nanoparticles. J. Magn. Magn. Mater. 507, 166861 (2020). https://doi.org/10.1016/j.jmmm.2020.166861

    Article  Google Scholar 

  47. Kneller, E.F., Luborsky, F.E.: Particle size dependence of coercivity and remanence of single-domain particles. J. Appl. Phys. 34(3), 656–658 (1963)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Physics, University of Rajasthan, Jaipur, for magnetic measurements and Department of Science and Technology, Government of India, New Delhi, for the sanctioned project to Banasthali Vidyapeeth under the CURIE scheme. The author K.K. Palsaniya is grateful to UGC, New Delhi, and the author S. R. Choudhary is grateful to CSIR, New Delhi, for providing financial assistance in terms of Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Choudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, B.L., Palsaniya, K.K., Choudhary, S.R. et al. Exploring Magnetic Behaviour in La0.70Pr0.30Mn0.8Co0.2O3 Perovskite. J Supercond Nov Magn 35, 1183–1193 (2022). https://doi.org/10.1007/s10948-022-06173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06173-0

Keywords

Navigation