Skip to main content

Advertisement

Log in

The Retention of High-Pressure-Induced High-Tc Superconductivity at Ambient Pressure

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This short review article is dedicated to Prof. Müller on the occasion of his 95th birthday. In the past few years, several reports of high superconducting transition temperatures (Tcs) above 200 K in hydrides under pressure above 150 GPa have appeared. The ultrahigh pressures needed to achieve the high-Tc superconducting state render these marvelous compounds difficult to be thoroughly studied using the well-known material characterization tools developed and employed for the study of the cuprate high-temperature superconductors at ambient pressure, impeding our understanding of the high-pressure-induced very high Tc state for science, and making the high-pressure-induced phases impractical for applications. To provide a relief to this impasse, we have developed a pressure-quench process (PQP) and have demonstrated it successfully in stabilizing at ambient pressure the high-pressure-induced superconducting phases and other phases in the non-superconducting element Sb, the binary superconducting compound FeSe, and the non-superconducting compound Cu-doped FeSe. It is not inconceivable that the PQP may be adapted for cuprates and hydrides with high-pressure-induced high Tc for science and technology. Our recent results and both the opportunities and challenges will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chu, C.W.: The search for higher Tc in Houston. Chapter 2 in High-Tc Copper Oxide Superconductors and Related Novel Materials: Dedicated to Prof. K. A. Müller on the Occasion of His 90th Birthday, ed. by A. Bussmann-Holder, H. Keller, and A. Bianconi, Springer, Berlin. Mater. Sci. 255, 15 (2017)

  2. Deng, L.Z., Zheng, Y.P., Wu, Z., Huyan, S.Y., Wu, H.C., Nie, Y.F., Cho, K., Chu, C.W.: Higher superconducting transition temperature by breaking the universal pressure relation. Proc. Natl. Acad. Sci. U.S.A. 116, 2004 (2019)

    Article  ADS  Google Scholar 

  3. Hung, T.L., Huang, C.H., Deng, L.Z., Ou, M.N., Chen, Y.Y., Wu, M.K., Huyan, S.Y., Chu, C.W., Chen, P.J., Lee, T.K.: Pressure induced superconductivity in MnSe. Nat. Commun. 12, 5436 (2021)

    Article  ADS  Google Scholar 

  4. Wu, Z., Deng, L.Z., Gooch, M., Huyan, S., Chu, C.W.: The retention at ambient of the high-pressure-induced metastable superconducting phases in antimony single crystals. Mater. Today Phys. 15, 100291 (2020)

  5. Deng, L.Z., Bontke, T., Dahal, R., Xie, Y., Gao, B., Li, X., Yin, K.T., Gooch, M., Rolston, D., Chen, T., Wu, Z., Ma, Y.M., Dai, P.C., Chu, C.W.: Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals. Proc. Natl. Acad. Sci. USA 118, e2108938118 (2021)

  6. Gao, L., Xue, Y.Y., Chen, F., Xiong, Q., Meng, R.L., Ramirez, D., Chu, C.W., Eggert, J.H., Mao, H.K.: Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260(R) (1994)

    Article  ADS  Google Scholar 

  7. Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015)

    Article  ADS  Google Scholar 

  8. Somayazulu, M., Ahart, M., Mishra, A.K., Geballe, Z.M., Baldini, M., Meng, Y., Struzhkin, V.V., Hemley, R.J.: Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019)

  9. Snider, E., Dasenbrock-Gammon, N., McBride, R., Debessai, M., Vindana, H., Vencatasamy, K., Lawler, K.V., Salamat, A., Dias, R.P.: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373 (2020)

  10. Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908 (1987)

    Article  ADS  Google Scholar 

  11.  Wigner, E., Huntington H.B.: On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764 (1935)

  12.  Ashcroft, N. W.: Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748 (1968)

  13. Ashcroft, N. W.: Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004)

  14. Duwez, P.: Metastable phases obtained by rapid quenching from the liquid state. Prog. Solid. State Ch. 3, 377 (1967)

    Article  Google Scholar 

  15. Chu, C.W.: Room-temperature superconductivity - what more needs to be further studied! IEEE CSC & ESAS Superconductivity News Forum. 14(49), STH62 (2021)

  16. Chu, C.W., Deng, L.Z., Wu, Z.: The pressure is off and the high Tc stays: a new pathway, IEEE CSC & ESAS Supercond. News Forum (global edition) 14, 1–5 (2021)

    Google Scholar 

  17. Chakravarty, S., Sudbo, A., Anderson, P.W.,  Strong, S.: Interlayer Tunneling and Gap Anisotropy in High-Temperature Superconductors. Science 261, 337 (1993)

  18. Ohta, Y., Tohyama, T., Maekawa, S.: Apex oxygen and critical temperature in copper oxide superconductors: Universal correlation with the stability of local singlets. Phys. Rev. B 43, 2968 (1991)

  19. Hunter, B.A., Jorgensen, J.D., Wagner, J.L., Radaelli, P.G., Hinks, D.G., Shaked, H., Hitterman, R.L., Von Dreele, R.B.: Pressure-induced structural changes in superconducting HgBa2Can−1CunO2n+2+δ  (n = 1, 2, 3) compounds. Physica C 221, 1 (1994)

  20. Duan, D., Liu, Y.X., Ma, Y.B., Shao, Z.J., Liu, B.B., Cui, T.: Structure and superconductivity of hydrides at high pressures, Natl. Sci. Rev. 4, 121 (2017)

  21. Semenok, D.V., Kruglov, I.A., Savkin, I.A., Kvashnin, A.G., Oganov, A.R.: On Distribution of Superconductivity in Metal Hydrides. Curr. Opin. Solid. State. Mater. Sci. 24, 100808 (2020)

  22. Zarkevich, N.A., Johnson, D.D.: Nudged-elastic band method with two climbing images: finding transition states in complex energy landscapes. J. Chem. Phys. 142, 024106 (2015)

  23. Caspersen, K.J., Carter, E.A.: Finding transition states for crystalline solid-solid phase transformations. Proc. Natl. Acad. Sci. USA 102, 6738–6743 (2005)

    Article  ADS  Google Scholar 

  24. Deng, L.Z., Wu, H.C., Litvinchuk, A.P., Yuan, N.F.Q., Lee, J.J., Dahal, R., Berger, H., Yang, H.D., Chu, C.W.: Room-temperature skyrmion phase in bulk Cu2OSeO3 under high pressures. Proc. Natl. Acad. Sci. USA 117, 8783–8787 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by US Air Force Office of Scientific Research Grants FA9550-15-1-0236 and FA9550-20-1-0068, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, C.W., Deng, L.Z. & Wu, Z. The Retention of High-Pressure-Induced High-Tc Superconductivity at Ambient Pressure. J Supercond Nov Magn 35, 1733–1741 (2022). https://doi.org/10.1007/s10948-022-06162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06162-3

Keywords

Navigation