Skip to main content
Log in

Why Does Maximum Tc Occur at the Crossover From Weak to Strong Electron–phonon Coupling in High-temperature Superconductors?

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In cuprate superconductors, a pronounced maximum of superconducting \({T}_{c}^{max}\) is observed in compounds that have an in-plane Cu–O distance \({a}_{Cu-O}\) close to \(\sim 1.92\) angstroms. On the other hand, direct measurements of the electron–phonon coupling \(\lambda \langle {\omega }^{2}\rangle\) as a function of \({a}_{Cu-O}\) show a clear linear correlation, implying that \({T}_{c}^{max}\) is a strongly non-linear function of \(\lambda \langle {\omega }^{2}\rangle\). Conventional superconductivity theories based on the electron–phonon interaction predict a monotonic dependence of \({T}_{c}^{max}\) on \(\lambda \langle {\omega }^{2}\rangle\), which makes them incompatible with the observed behavior. The observed crossover behavior as a function of \(\lambda \langle {\omega }^{2}\rangle\) suggests that \({T}_{c}^{max}\) occurs at the crossover from weak to strong coupling, which is also associated with the onset of carrier localization. A coexistence, with a dynamical exchange of localized and itinerant carriers in a two-component superconductivity scenario are in agreement with the observed anomalous behavior and are suggested to be the key to understanding the mechanism for achieving high \({T}_{c}^{max}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Batlogg, B.: Isotope Effect in the High-Tc Superconductors Ba2YCu3O7 and Ba2EuCu307 Phys. Rev. Lett. 58, 2333 (1987)

    Article  ADS  Google Scholar 

  2. Bussmann-Holder, A., Keller, H.: Unconventional Isotope Effects, Multi-Component Superconductivity and Polaron Formation in High Temperature Cuprate Superconductors. J Phys. Conf. Ser. 108, 012019 (2008)

  3. Drozdov, A.P., Kong, P.P., Minkov, V.S., Besedin, S.P., Kuzovnikov, M.A., Mozaffari, S., Balicas, L., Balakirev, F.F., Graf, D.E., Prakapenka, V.B., Greenberg, E., Knyazev, D., Tkacz, M., Eremets, M.I.: Superconductivity at 250 K in Lanthanum Hydride under High Pressures Nature 569, 528 (2019)

    Article  ADS  Google Scholar 

  4. McMillan, W.L.: Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  5. Eliashberg, G.M.: Interactions between Electrons and Lattice Vibrations in a Superconductor. Sov. Phys. JETP 11, 696 (1960)

    MathSciNet  MATH  Google Scholar 

  6. Rao, C.N.R., Ganguli, A.K.: Structure-Property Relationship in Superconducting Cuprates. Chem. Soc. Rev. 24, 1 (1995)

    Article  Google Scholar 

  7. Gadermaier, C., Kabanov, V.V., Alexandrov, A.S., Mihailovic, D.: Strain-Induced Enhancement of the Electron Energy Relaxation in Strongly Correlated Superconductors. Phys. Rev. X 4, 011056 (2014)

  8. Allen, P.B.: Theory of Thermal Relaxation of Electrons in Metals Phys. Rev. Lett. 59, 1460 (1987)

    Article  ADS  Google Scholar 

  9. Kabanov, V.V., Alexandrov, A.S.: Electron Relaxation in Metals: Theory and Exact Analytical Solutions. Phys. Rev. B 78, 174514 (2008)

  10. Feynman, R.P.: Slow Electrons in a Polar Crystal. Phys. Rev. 97, 660 (1955)

    Article  ADS  Google Scholar 

  11. Micnas, R., Ranninger, J., Robaszkiewicz, S.: Superconductivity in Narrow-Band Systems with Local Nonretarded Attractive Interactions. Rev. Mod. Phys. 62, 113 (1990)

    Article  ADS  Google Scholar 

  12. Alexandrov, A., Ranninger, J.: Theory of Bipolarons and Bipolaronic Bands. Phys. Rev. B 23, 1796 (1981)

    Article  ADS  Google Scholar 

  13. Robaszkiewicz, S., Micnas, R., Ranninger, J.: Superconductivity in the Generalized Periodic Anderson Model with Strong Local Attraction. Phys. Rev. B 36, 180 (1987)

    Article  ADS  Google Scholar 

  14. Mihailovic, D., Müller, D.A.: The Two-Component Paradigm for Superconductivity in the Cuprates, in High-Tc Superconductivity 1996: Ten Years after the Discovery, Eds. E. Kaldis, E. Liarokapis and K.A.Muller, NATO ASI Series (NSSE) 343, 243–256 (1997)

  15. Mihailovic, D., Foster, C.M., Voss, K., Heeger, A.J.: Application of the Polaron-Transport Theory to σ(ω) in Tl2Ba2Ca1-XGdxCu2O8, YBa2Cu3O7- d, and La2-XSrxCuO4. Phys. Rev. B 42, 7989 (1990)

  16. Thomas, T.N., Stevens, C.J., Choudhary, A., Ryan, J.F., Mihailovic, D., Mertelj, T., Forro, L., Wagner, G., Evetts, J.E.: Photoexcited Carrier Relaxation and Localization in Bi2Sr2Ca1-YYyCu2O8 and YBa2Cu3O7: A Study by Femtosecond Time-Resolved Spectroscopy. Phys. Rev. B 53, 12436 (1996)

    Article  ADS  Google Scholar 

  17. Madan, I., Kurosawa, T., Toda, Y., Oda, M., Mertelj, T., Mihailovic, D.: Evidence for Carrier Localization in the Pseudogap State of Cuprate Superconductors from Coherent Quench Experiments. Nat. Commun. 6, 6958 (2015)

  18. Mihailovic, D., Stevens, C., Demsar, J., Podobnik, B., Smith, D., Ryan, J.: Evidence for Polarons and Itinerant Carriers in Superconductivity from Time-Resolved Optical Measurements on YBa2Cu3O. J. Supercond. 10, 337 (1997)

    Article  ADS  Google Scholar 

  19. Stevens, C.J., Smith, D., Chen, C., Ryan, J.F., Podobnik, B.: Evidence for Two-Component High-Temperature Superconductivity in the Femtosecond Optical Response of YBa2Cu3O7- δ. Phys. Rev. Lett. 78, 2212 (1997)

    Article  ADS  Google Scholar 

  20. Mertelj, T., Demsar, J., Podobnik, B., Poberaj, I., Mihailovic, D.: Photoexcited Carrier Relaxation in YBaCuO by Picosecond Resonant Raman Spectroscopy. Phys. Rev. B 55, 6061 (1997)

    Article  ADS  Google Scholar 

  21. Mertelj, T., Kabanov, V., Mihailovic, D.: Charged Particles on a Two-Dimensional Lattice Subject to Anisotropic Jahn-Teller Interactions. Phys. Rev. Lett. 94, 147003 (2005)

  22. Mertelj, T., Kabanov, V.V., Mena, J.M., Mihailovic, D.: Self-Organization of Charged Particles on a Two-Dimensional Lattice Subject to Anisotropic Jahn-Teller-Type Interaction and Three-Dimensional Coulomb Repulsion. Phys Rev B 76, 9 (2007)

    Article  Google Scholar 

  23. Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C., Renner, C.: Scanning Tunneling Spectroscopy of High-Temperature Superconductors. Rev. Mod. Phys. 79, 353 (2007)

    Article  ADS  Google Scholar 

  24. Mihailovic, D., Kabanov, V., Muller, K.: The Attainable Superconducting T-c in a Model of Phase Coherence by Percolating. Europhys. Lett. 57, 254 (2002)

    Article  ADS  Google Scholar 

  25. Miranda, J., Mertelj, T., Kabanov, V.V., Mihailovic, D.: Bipolaron Jahn-Teller Pairing and Charge Transport in Cuprates. Journal Of Superconductivity And Novel Magnetism 22, 281 (2009)

    Article  Google Scholar 

  26. Mihailovic, D., Inter-Site Pair Superconductivity: Origins and Recent Validation Experiments. Springer Series: Mat. Sci. 201 (2017)

  27. Mertelj, T., Kabanov, V.V., Mihailovic, D.: Charged Particles on a Two-Dimensional Lattice Subject to Anisotropic Jahn-Teller Interactions. Phys Rev Lett 94, 147003 (2005)

Download references

Acknowledgements

On this special occasion of his 95th birthday, I wish to acknowledge K. Alex Müller for continuing inspiration, valuable discussions and encouragement over the years that kept me working in this remarkable field for such a long time. I also wish to acknowledge V.V. Kabanov and T. Mertelj for contributions to the presented and cited work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Mihailovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihailovic, D. Why Does Maximum Tc Occur at the Crossover From Weak to Strong Electron–phonon Coupling in High-temperature Superconductors?. J Supercond Nov Magn 35, 1769–1773 (2022). https://doi.org/10.1007/s10948-022-06152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06152-5

Keywords

Navigation