Skip to main content
Log in

Origin of Magnetic Dielectric Effect in Geometry Frustrated CuFe1−xMnxO2 Single Crystal

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This work aimed to investigate low temperature magnetic dielectric behavior of CuFe1−xMnxO2 (x = 0, 0.01, 0.03, and 0.05). We also discussed the influence of different Mn3+-doped concentrations and analyzed the origin of magnetic dielectric coupling effect in CuFeO2. The obvious variation of dielectric constant with different magnetic fields and temperatures was observed. The critical magnetic fields and critical temperatures, where dielectric constant changed obviously, were closely related to ion-doped concentration. In the ferroelectric incommensurate (FEIC) phase, the dopant enhanced electric polarization by regulating magnetic order. Electric polarization was modified by external magnetic fields, which shows strong magnetoelectric coupling. Based on the special spin-frustrated configuration of the ‘‘Fe3+(Mn3+) scalene triangular’’ in CuFe1−xMnxO2 and the magnetostriction effect, a possible mechanism for the observed dielectric behavior was assumed. In the mechanism, the amplitudes, directions of oxygen ion shift, were mediated by both the applied magnetic field and Mn3+-doping level. Furthermore, the experimental results show that dielectric behavior of CuFe1−xMnxO2 has a close relationship with magnetic structure and geometry frustrated, which may open up a new vista for studies of magnetoelectric materials. Based on the experimental results, the effects of Mn3+ doped on magnetic dielectric and possible mechanism diagrams were assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitsuda, S., Yamano, M., Kuribara, K., Nakajima, T., Masuda, K., Yoshitomi, K., Terada, N., Kitazawa, H., Takenaka, K., Takamasu, T.: Dielectric relaxation in a nonferroelectric phase of magneto-electric multiferroic CuFeO2. Journal of Physics: Conference Series. 200, 012120 (2010) 

  2. Bai, P., Zeng, Y., Han, J., Wei, Y., Li, M.: Influence of Al doping on structural, dielectric, and ferroelectric properties of multiferroic BiFeO3 ceramics. Ceram. Int. 45, 7730 (2019)

    Article  Google Scholar 

  3. Balli, M., Mansouri, S., Jandl, S., Fournier, P., Dimitrov, D.Z.: Large rotating magnetocaloric effect in the orthorhombic DyMnO3 single crystal. Solid State Commun. 239, 9 (2016)

    Article  ADS  Google Scholar 

  4. Shen, H., Cheng, Z., Hong, F., Xu, J., Yuan, S., Cao, S., Wang, X.: Magnetic field induced discontinuous spin reorientation in ErFeO3 single crystal. Applied Physics Letters. 103,  192404 (2013)

  5. Zhang, F.L., Kang, L., Zhao, Q., Zhou, J., Lippens, D.: Magnetic and electric coupling effects of dielectric metamaterial. New Journal of Physics. 14, 033031 (2012)

  6. Tamatsukuri, H., Mitsuda, S., Hiroura, K., Nakajima, T., Fujihala, M., Yamano, M., Toshioka, Y., Kaneko, C., Takehana, K., Imanaka, Y., Terada, N., Kitazawa, H.: Magnetic field tunable dielectric dispersion in successive field-induced magnetic phases of the geometrically frustrated magnet. CuFeO2 up to 28 T. Physical Review B. 97, 214407 (2018)

  7. Tamatsukuri, H., Mitsuda, S., Nakajima, T., Shibata, K., Kaneko, C., Takehana, K., Imanaka, Y., Terada, N., Kitazawa, H., Prokes, K., Matas, S., Kiefer, K., Paeckel, S., Sokolowski, A., Klemke, B., Gerischer, S.: Activation of frozen ferroelectric domain wall by magnetic field sweeping in multiferroic CuFeO2. Physical Review B. 93, 174101 (2016)

  8. Beilsten-Edmands, J., Magorrian, S.J., Foronda, F.R., Prabhakaran, D., Radaelli, P.G., Johnson, R.D.: Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2. Physical Review B. 94, 144411 (2016)

  9. Klobes, B., Herlitschke, M., Rushchanskii, K.Z., Wille, H.C., Lummen, T.T.A., van Loosdrecht, P.H.M., Nugroho, A.A., Hermann, R.P.: Anisotropic lattice dynamics and intermediate-phase magnetism in delafossite CuFeO2. Physical Review B. 92, 014304 (2015)

  10. Xu, H., Wu, R., Zhang, J.Y., Han, W., Chen, L., Liang, X., Haw, C.Y., Mazzolini, P., Bierwagen, O., Qi, D.C., Zhang, K.H.L.: Revealing the electronic structure and optical properties of CuFeO2 as a P-type oxide semiconductor. ACS Appl. Electron. Mater. 3, 1834 (2021)

    Article  Google Scholar 

  11. Terada, N., Tanaka, Y., Tabata, Y., Katsumata, K., Kikkawa, A., Mitsuda, S.: Restoring higher symmetric crystal structure with magnetic field in triangular lattice antiferromagnet CuFeO2. Journal of the Physical Society of Japan. 75, 113702 (2006)

  12. Setsuo Mitsuda, N.K., Uno, T., Mase, M.: Partially disordered phase in frustrated triangular lattice antiferromagnet CuFeO2. Journal of the Physical Society of Japan. 67, 4026 (1998)

  13. Terada, N., Mitsuda, S., Prokes, K., Suzuki, O., Kitazawa, H., Aruga Katori, H.: Impact of a small number of nonmagnetic impurities on H-T magnetic phase diagram of CuFeO2. Physical Review B. 70, 174412 (2004)

  14. Petrenko, O.A., Balakrishnan, G., Lees, M.R., McK, D., Paul, A.H.: High-magnetic-field behavior of the triangular-lattice antiferromagnet CuFeO2. Phys. Rev. B 62, 13 (2000)

    Article  Google Scholar 

  15. Ye, F., Dai, H., Peng, K., Li, T., Chen, J., Chen, Z., Li, N.: Effect of Mn doping on the microstructure and magnetic properties of CuFeO2 ceramics. Journal of Advanced Ceramics 9, 444 (2020)

    Article  Google Scholar 

  16. Xu, M., Dai, H., Li, T., Peng, K., Chen, J., Chen, Z., Xue, Y., Cao, X., Wang, B.: Effect of transition metal ion doping on the microstructure, defect evolution, and magnetic and magnetocaloric properties of CuFeO2 ceramics. J. Supercond. Novel Magn. 33, 2881 (2020)

    Article  Google Scholar 

  17. Katsura, H., Nagaosa, N., Balatsky, A.V.: Spin current and magnetoelectric effect in noncollinear magnets. Physical Review Letters. 95, 057205 (2005)

  18. Hongaromkij, Y., Rudradawong, C., Ruttanapun, C.: Effect of Ga-substitution for Fe sites of delafossite CuFe1−xGaxO2 (x = 0.0, 0.1, 0.3, 0.5) on thermal conductivity. Journal of Materials Science: Materials in Electronics. 27, 6438 (2016)

  19. Naka-in, L., Kamwanna, T., Srepusharawoot, P., Pinitsoontorn, S., Amornkitbamrung, V.: Effects of Ge substitution on the structural and physical properties of CuFeO2 delafossite oxide. Japanese Journal of Applied Physics. 54, 04DH10 (2015)

  20. Song, J.D., Wu, J.C., Rao, X., Li, S.J., Zhao, Z.Y., Liu, X.G., Zhao, X., Sun, X.F.: Single crystal growth of CuFe1−xGaxO2 by the optical floating-zone method. J. Cryst. Growth 446, 79 (2016)

    Article  ADS  Google Scholar 

  21. Shi, L.R., Xia, Z.C., Jin, Z., Wei, M., Huang, J.W., Chen, B.R., Xiao, L.X., Zuo, H.K., Ouyang, Z.W.: High magnetic field induced spin flip/flop behavior and magnetic phase diagram of CuFe1−xGaxO2. J. Solid State Chem. 219, 152 (2014)

    Article  ADS  Google Scholar 

  22. Terada, N., Mitsuda, S., Fujii, T., Soejima, K.I., Doi, I., Aruga Katori, H., Noda, Y.: Magnetic phase diagram of the triangular lattice antiferromagnet CuFe1-xAlxO2. Journal of the Physical Society of Japan. 74, 2604 (2005)

  23. Liu, Q.L., Zhao, Z.Y., Zhao, R.D., Yi, J.H.: Fundamental properties of delafossite CuFeO2 as photocatalyst for solar energy conversion. Journal of Alloys and Compounds. 819, 153032 (2020)

  24. Mitamura, H., Mitsuda, S., Kanetsuki, S., Aruga Katori, H., Sakakibara, T., Kindo, K.: Dielectric polarization measurements on the antiferromagnetic triangular lattice system CuFeO2 in pulsed high magnetic fields. Journal of the Physical Society of Japan. 76, 094709 (2007)

  25. Seki, S., Yamasaki, Y., Shiomi, Y., Iguchi, S., Onose, Y., Tokura, Y.: Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2. Phys. Rev. B 75, 100403(R) (2007)

    Article  ADS  Google Scholar 

  26. Hayashi, K., Fukatsu, R., Nozaki, T., Miyazaki, Y., Kajitani, T.: Structural, magnetic, and ferroelectric properties of CuFe1−xMnxO2. Physical Review B. 87, 064418 (2013)

  27. Kambale, R.C., Shaikh, P.A., Bhosale, C.H., Rajpure, K.Y., Kolekar, Y.D.: The effect of Mn substitution on the magnetic and dielectric properties of cobalt ferrite synthesized by an autocombustion route. Smart Materials and Structures. 18, 115028 (2009)

  28. Nakajima, T., Mitsuda, S., Kanetsuki, S., Prokes, K., Podlesnyak, A., Kimura, H., Noda, Y.: Spin noncollinearlity in multiferroic phase of triangular lattice antiferromagnet CuFe1-xAlxO2. Journal of the Physical Society of Japan. 76, 043709 (2007)

  29. Kagawa, F., Mochizuki, M., Onose, Y., Murakawa, H., Kaneko, Y., Furukawa, N., Tokura, Y.:  Dynamics of multiferroic domain wall in spin-cycloidal ferroelectric DyMnO3. Physical Review Letters. 102, 057604 (2009)

  30. Yamasaki, Y., Kohara, Y., Tokura, Y.: Quantum magnetoelectric effect in iron garnet. Phys. Rev. B 80, 140412(R) (2009)

    Article  ADS  Google Scholar 

  31. Pokhriyal, P., Bhakar, A., Sinha, A.K., Sagdeo, A.: Colossal Dielectric Permittivity and mechanism of AC conduction in bulk delafossite CuFeO2. Journal of Applied Physics. 125, 164101 (2019)

  32. Xiao, G.L., Xia, Z.C., Zhang, X.X., Song, Y.J., Huang, S., Yang, F., Jiang, D.Q., Deng, H., Ouyang, Z.W., Shi, L.R.: Impact of Mn3+ substitution on magnetization and electric polarization behavior in geometry frustrated CuFe1−xMnxO2. J. Mater. Sci.: Mater. Electron. 30, 9531 (2019)

    Google Scholar 

  33. Terada, N., Mitsuda, S., Tanaka, Y., Tabata, Y., Katsumata, K., Kikkawa, A.: Field-induced incommensurate lattice modulations in the delafossite CuFeO2. Journal of the Physical Society of Japan. 77, 054701 (2008)

  34. Terada, N., Narumi, Y., Sawai, Y., Katsumata, K., Staub, U., Tanaka, Y., Kikkawa, A., Fukui, T., Kindo, K., Yamamoto, T., Kanmuri, R., Hagiwara, M., Toyokawa, H., Ishikawa, T., Kitamura, H.: Correlation between crystal structure and magnetism in the frustrated antiferromagnet CuFeO2 under high magnetic fields. Phys. Rev. B 75, 100403(R) (2007)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC No. 11704295) and Key Scientific Research Project of Colleges and Universities in Henan Province (No. 20A140002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. C. Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G.L., Xia, Z.C., Wu, Y.Y. et al. Origin of Magnetic Dielectric Effect in Geometry Frustrated CuFe1−xMnxO2 Single Crystal. J Supercond Nov Magn 35, 1099–1105 (2022). https://doi.org/10.1007/s10948-022-06144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06144-5

Keywords

Navigation