Skip to main content
Log in

Infrared Absorption in High-Tc Superconductors Using the Spin Polaron Formulation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper optical absorption of high-Tc superconductors in the infrared region is investigated within the framework of the spin polaron theory. The approach uses a representation where holes are spinless fermions while spins are normal bosons. Thus, we explored infrared absorption in high-Tc superconductors at finite temperature in a completely analytical way. This task is done through the use of the Matsubara Green’s function method in the spin polaron formulation. Infrared absorption is then analyzed in terms of the conductivity which is a function of the energy gap and the frequency of the infrared energy. Our main result is consistent with the conductivity of superconductors in the clean limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mattis, D.C., Bardeen, J.: Theory of the anomalous skin effect in normal superconducting metals. Phys. Rev. 111, 412–417 (1958). https://doi.org/10.1103/PhysRev.111.412

  2. Mahan, G.D.: Many-Particle Physics, 2nd edn., pp. 813–818. Plenum Press, New York (1990)

    Book  Google Scholar 

  3. Palmer, L.H., Tinkham, M.: Far infrared absorption in thin superconducting lead films. Phys. Rev. 165, 588 (1968).https://doi.org/10.1103/PhysRev.165.588

  4. Giaever, I.: Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147 (1960).https://doi.org/10.1103/PhysRevLett.5.147

  5. Baraduc, C., El Azrak A., Bontemps, N.: Infrared conductivity in the normal state of cuprate thin films. J. Supercond. Novel Magn. 9, 3–6 (1996).https://doi.org/10.1007/BF00728415

  6. Leslie, J.D., Ginsberg D.M.: Far infrared absorption in superconducting lead alloys. Phys. Rev. 133, A362 (1964).https://doi.org/10.1103/PhysRev.133.A362.

  7. Bonn, D.A., Greedan, J.E., Stager, C.V., Timusk, T., Doss, M.G., Herr, S.L., Kamaras, K., Tanner, D.B.: Far-infrared conductivity of the high-Tc superconductor YBa2Cu3O7. Phys. Rev. Lett. 58, 2249 (1987).https://doi.org/10.1103/PhysRevLett.58.2249.

  8. Kirtley, J.R, Collins, R.T, Schlesinger, Z., Gallagher, W.J., Sandstrom, R.L., Dinger, T.R., Chance, D.A.: Tunneling and infrared measurements of the energy gap in the high-critical-temperature superconductor Y-Ba-Cu-O. Phys. Rev. B, 35, 8846 (1987).https://doi.org/10.1103/PhysRevB.35.8846.

  9. Schlesinger, Z., Collins R.T., Holtzberg F., Field, C., Blanton S.H., Welp, U., Crabtree G.W., Fang Y., Liu J.Z.: Superconducting energy gap and normal state conductivity of a single domain YBa2Cu3O7 crystal. Phys. Rev. Lett. 65, 801 (1990).https://doi.org/10.1103/PhysRevLett.65.801.

  10. Weber, W.: Electron-phonon interaction in the new superconductors La2-x(BaSr)xCuO4. Phys. Rev. Lett. 58 1371 (1987).https://doi.org/10.1103/PhysRevLett.58.1371

  11. Weber, W., Mattheiss, L.F.: Electron-phonon interaction in Ba2YCu3O7. Phys. Rev. B 37 599 (1988).https://doi.org/10.1103/PhysRevB.37.599

  12. Villegas, K.H., Yanga, D.M., Esguerra, J.P.: Tunneling of holes in spin polaron theory. J. Supercond. Novel Magn. 27 493 (2014).https://doi.org/10.1007/s10948-013-2290-5

  13. Villegas, K.H., Yanga, D.M.: Josephson tunneling current in spin polaron theory. J. Supercond. Novel Magn. 25, 1873 (2012).https://doi.org/10.1007/s10948-012-1593-2

  14. Morales, A.A. Jr., Yanga, D.M., Kurihara, S.: Calculation of entropy and specific heat in the spin polaron formulation at finite temperature. J. Supercond. Novel Magn. 17, 283 (2004). https://doi.org/10.1023/B:JOSC.0000021227.08059.45

    Article  ADS  Google Scholar 

  15. Morales, A.A. Jr., Yanga, D.M., Kurihara, S.: The hole spectral function in the finite temperature Green’s function scheme. J. Supercond. Novel Magn. 15, 277 (2002). https://doi.org/10.1023/A:1019923714066

    Article  ADS  Google Scholar 

  16. Yanga, D.M., Morales, A.A., Jr.: Application of the spin polaron theory at finite temperature. Physica C 364–365, 123 (2001). https://doi.org/10.1016/S0921-4534(01)00728-6

    Article  ADS  Google Scholar 

  17. Devreese, J.T., Tempere, J.: Large- polaron effects in the infrared spectrum of high-Tc cuprate superconductors. Solid State Commun. 106, 5 (1998). https://doi.org/10.1016/S0038-1098(98)00019-2

    Article  Google Scholar 

  18. Sato, M.: Two-dimensional antiferromagnetic excitations from a large single crystal of YBa2Cu3O6.2. Phys. Rev. Lett. 61, 1317(1988). https://doi.org/10.1103/PhysRevLett.61.1317

  19. Torrance, J.B., et al.: Anomalous disappearance of high-Tc superconductivity at high hole concentration in metallic La2-xSrxCuO4. Phys. Rev. Lett. 61, 1127 (1988). https://doi.org/10.1103/PhysRevLett.61.1127

    Article  ADS  Google Scholar 

  20. Nazarenko, A., et al.: Photoemission spectra of Sr2CuO2Cl2: a theoretical analysis. Phys. Rev. B 51, 8676–8679 (1995). https://doi.org/10.1103/PhysRevB.51.8676

    Article  ADS  Google Scholar 

  21. Belinicher, V.I., Chernyshev, A.L., Shubin, V.A.: Generalized t-t’-J model: parameters and single-particle spectrum for electrons and holes in copper oxides. Phys. Rev. B 53, 335–342 (1996). https://doi.org/10.1103/PhysRevB.53.335

    Article  ADS  Google Scholar 

  22. Starykh, O.A., de Alcantara Bonfim, O.F., Reiter, G.F.: Self-consistent born approximation for the hole motion in the three-band model: a comparison with photoemission experiments. Phys. Rev. B 52, 12534–12537 (1995). https://doi.org/10.1103/PhysRevB.52.12534

    Article  ADS  Google Scholar 

  23. Wells, B.O., et al.: E versus k relations and many body effects in the model insulating copper oxide Sr2CuO2Cl2. Phys. Rev. Lett. 74, 964–967 (1995). https://doi.org/10.1103/PhysRevLett.74.964

    Article  ADS  Google Scholar 

  24. Belinicher, V.I., Chernyshev, A.L., Shubin, V.A.: Two-hole problem in the t-J model: a canonical approach. Phys. Rev. B 56, 3381 (1997). https://doi.org/10.1103/PhysRevB.56.3381

    Article  ADS  Google Scholar 

  25. Belinicher, V.I., et al.: Hole-hole superconducting pairing in the tJ model induced by spin-wave exchange. Phys. Rev. B 51, 6076 (1995). https://doi.org/10.1103/PhysRevB.51.6076

    Article  ADS  Google Scholar 

  26. Dagotto, E.: Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763 (1994). https://doi.org/10.1103/RevModPhys.66.763

    Article  ADS  Google Scholar 

  27. Maekawa, S., Tohyama, T.: Charge and spin in low-dimensional cuprates. Rep. Prog. Phys. 64, 383 (2001). https://doi.org/10.1088/0034-4885/64/3/202

    Article  ADS  Google Scholar 

  28. Wood, R.F., Cooke, J.F.: d9 Spin-polaron theory of high-Tc superconductivity. Phys. Rev. B 45, 5585 (1992). https://doi.org/10.1103/PhysRevB.45.5585

    Article  ADS  Google Scholar 

  29. Tarascon, J.M., et al.: Superconductivity at 40 K in the oxygen defect perovskites La2-xSrxCuO4-y. Science 235, 1373 (1987). https://doi.org/10.1126/science.235.4794.1373

    Article  ADS  Google Scholar 

  30. Shafer, M.W., Penney, T., Olson, B.L.: Correlation of Tc with hole concentration in La2-xSrxCuO4-σ. Phys. Rev. B 36, 4047 (1987).https://doi.org/10.1103/PhysRevB.36.4047

  31. van Dover, R.B., et al.: Composition-dependent superconductivity in La2-xSrxCuO4-σ. Phys. Rev. B 35, 5337 (1987). https://doi.org/10.1103/PhysRevB.35.5337

    Article  ADS  Google Scholar 

  32. Schmitt-Rink, S., Varma, C.M., Ruckenstein, A.E.: Spectral function of holes in a quantum antiferromagnet. Phys. Rev. Lett. 60, 2793 (1988). https://doi.org/10.1103/PhysRevLett.60.2793

    Article  ADS  Google Scholar 

  33. Martinez, G., Horsch, P.: Spin polarons in the t-J model. Phys. Rev. B 44, 317 (1991). https://doi.org/10.1103/PhysRevB.44.317

    Article  ADS  Google Scholar 

  34. Plakida, N.M., Oudovenko, V.S., Horsch, P., Liechtenstein, A.I.: Superconducting pairing of spin polarons in the t-J model. Phys. Rev. B 55, R11997 (1997). https://doi.org/10.1103/PhysRevB.55.R11997

    Article  ADS  Google Scholar 

  35. Callelero, M.J., Yanga, D.M.: Mobility of spin polarons with vertex corrections. Int. J. Mod. Phys. B 33, 1950195 (2019). https://doi.org/10.1142/S0217979219501959

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Pelayo, J.C., Yanga, D.M.: Linked cluster theory in the spin polaron problem. Int. J. Mod. Phys. B 33, 1950044 (2019). https://doi.org/10.1142/S0217979219500449

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Eremin, M.V., Larionov, I.A., Lyubin, I.A.: London penetration depth in the tight binding approximation: orthorhombic distortion and oxygen isotope effects in cuprates. Phys.: Condens. Matter 22 185704 (2010). https://doi.org/10.1088/0953-8984/22/18/185704

  38. Dzebisashvili, D.M., Komarov, K.K.: London penetration depth in the ensemble of spin polarons of cuprate superconductors. Eur. Phys. J. B. 91, 278 (2018).https://doi.org/10.1140/epjb/e2018-90266-6

  39. Lee, S.C., Banit, F., Woerner, M., Wacker, A.: Quantum mechanical wavepacket transport in quantum cascade laser structures. Phys. Rev. B. 73, 245320 (2006).https://doi.org/10.1103/PhysRevB.73.245320

  40. Orenstein, J., Thomas, G.A., Millis, A.J., Cooper, S.L., Rapkine, D.H., Timusk, T., Schneemeyer, L.F., Waszczak, J.V.: Frequency-and temperature-dependent conductivity in YBa2Cu3O6+x crystals. Phys. Rev. B 42, 6342 (1990). https://doi.org/10.1103/PhysRevB.42.6342

    Article  ADS  Google Scholar 

  41. Romero, D.B., Porter, C.D., Tanner, D.B., Forro, L., Mandrus, D., Mihaly, L., Carr, G.L., Williams, G.P.: Quasiparticle damping in Bi2Sr2CaCu2O8 and Bi2Sr2CuO6. Phys. Rev. Lett. 68, 1590 (1992). https://doi.org/10.1103/PhysRevLett.68.1590

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, UBP, is grateful to the Commission on Higher Education (CHED) of the Philippine Government and the University of San Carlos for the generous support, which led to his contribution in this research. DMY also acknowledges the support of the University of San Carlos in this research endeavor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unofre B. Pili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pili, U.B., Yanga, D.M. Infrared Absorption in High-Tc Superconductors Using the Spin Polaron Formulation. J Supercond Nov Magn 35, 1883–1889 (2022). https://doi.org/10.1007/s10948-022-06142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06142-7

Keywords

Navigation