Skip to main content

The Retention and Study of High-Pressure-Induced Phases in High- and Room-Temperature Superconductors


The search for high-temperature superconductivity (HTS) and room-temperature superconductivity (RTS) in hydrogen and hydrogen-rich compounds under high pressure has a long history. Recently, several reports of high superconducting transition temperature (Tc) up to 287 K in hydrides under pressure of up to 267 GPa have appeared. The ultrahigh pressure needed to create the HTS in hydrides has hampered the detailed study of the high-pressure-induced high-Tc superconductivity state, as well as any potential applications. To lower the required pressure, even to zero, we have developed a pressure-quench process (PQP) and have demonstrated it successfully in stabilizing at ambient the high-pressure-induced superconducting phases and other phases in the non-superconducting element Sb, the binary superconducting compound FeSe, and the non-superconducting compound Cu-doped FeSe. It is not inconceivable that the PQP may be adapted for hydrides with Tc approaching room temperature for science and technology. Our recent results and both the opportunities and challenges will be discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.  7
Fig.  8
Fig.  9


  1. Gao, L., Xue, Y.Y., Chen, F., Xiong, Q., Meng, R.L., Ramirez, D., Chu, C.W., Eggert, J.H., Mao, H.K.: Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260(R) (1994)

    ADS  Article  Google Scholar 

  2. Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015)

    ADS  Article  Google Scholar 

  3. Somayazulu, M., Ahart, M., Mishra, A. K., Geballe, Z.M., Baldini, M., Meng, Y., Struzhkin, V.V., Hemley, R.J.: Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019)

  4. Snider, E., Dasenbrock-Gammon, N., McBride, R., Debessai, M., Vindana, H.,  Vencatasamy, K., Lawler, K.V., Salamat, A., Dias., R.P.: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373 (2020)

  5. Deng, L.Z., Bontke, T., Dahal, R., Xie, Y., Gao, B., Li,  X., Yin, K.T., Gooch, M., Rolston, D.,  Chen, T., Wu, Z., Ma, Y. M., Dai, P.C., Chu, C.W: Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals. Proc. Natl. Acad. Sci. U.S.A. 118, e2108938118 (2021)

  6. Ginzburg, V.L.: What problems of physics and astrophysics are of special importance and interest at present? Sov. Phys. Usp. 14, 21 (1971)

    ADS  Article  Google Scholar 

  7. Ginzburg, V.L.: What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century)? Phys. Usp. 42, 353 (1999)

    ADS  Article  Google Scholar 

  8. Wigner, E., Huntington, H.B.: On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764 (1935)

    ADS  Article  Google Scholar 

  9. Mao, H.K., Bell, P.M.: Technique of operating the diamond-window pressure cell: considerations of the design and functions of the diamond anvils. Year Book-Carnegie Inst. Washington 7, 646 (1977)

    Google Scholar 

  10. Dias, R.P., Silvera, I.F.: Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355, 715 (2017)

    ADS  Article  Google Scholar 

  11. Ashcroft, N.W.: Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748 (1968)

    ADS  Article  Google Scholar 

  12. Carlsson, A.E., Ashcroft, N.W.: Approaches for reducing the insulator-metal transition pressure in hydrogen. Phys. Rev. Lett. 50, 1825 (1983)

    ADS  Article  Google Scholar 

  13. Richardson, C.F., Ashcroft, N.W.: High temperature superconductivity in metallic hydrogen: electron-electron enhancements. Phys. Rev. Lett. 78, 118 (1997)

    ADS  Article  Google Scholar 

  14. Ashcroft, N.W.: Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004)

  15. Feng, J., Grochala, W., Jaroń, T., Hoffmann, R., Bergara, A., Ashcroft, N.W.: Structures and potential superconductivity in SiH4 at high pressure: en route to metallic hydrogen, Phys. Rev. Lett. 96, 017006 (2006)

  16. Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908 (1987)

    ADS  Article  Google Scholar 

  17. Deng, L.Z., Zheng, Y.P., Wu, Z., Huyan, S.Y., Wu, H.C., Nie, Y.F., Cho, K., Chu, C.W.: Higher superconducting transition temperature by breaking the universal pressure relation. Proc. Natl. Acad. Sci. U.S.A. 116, 2004 (2019)

    ADS  Article  Google Scholar 

  18. Duwez, P.: Metastable phases obtained by rapid quenching from the liquid state. Prog. Solid. State Ch. 3, 377 (1967)

    Article  Google Scholar 

  19. Wu, Z., Deng, L. Z., Gooch, M., Huyan, S., Chu, C.W:The retention at ambient of the high-pressure-induced metastable superconducting phases in antimony single crystals. Mater. Today Phys. 15, 100291 (2020)

  20. Hirsch, J.E., Marsiglio, F.: Unusual width of the superconducting transition in a hydride. Nature 596, E9–E10 (2021)

    ADS  Article  Google Scholar 

  21. Dogan, M., Cohen, M.: Anomalous behavior in high-pressure carbonaceous sulfur hydride. Physics C 583, 1353851 (2021)

    ADS  Article  Google Scholar 

  22. Chu, C. W.: Room-temperature superconductivity - What more needs to be further studied! IEEE CSC & ESAS Superconduct. News Forum, 14(49), STH62 (2021)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. W. Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chu, C.W., Deng, L.Z. & Wu, Z. The Retention and Study of High-Pressure-Induced Phases in High- and Room-Temperature Superconductors. J Supercond Nov Magn 35, 987–995 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • High-temperature superconductivity
  • High pressure
  • Pressure quench
  • Retention
  • FeSe
  • Hydrides