Skip to main content
Log in

Structural and Magnetic Behavior of MoS2 on Doping of Transition Metals: a DFT Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Owing to attractive properties of 2D transition metal dichalcogenides (TMDCs), MX2 has obtained much attention. Therefore, using first principles calculations, investigations have been carried out on structural, half, and full metallic behavior and their impact on magnetic properties of transition metals (TMs), such as Cr, Mn, Co, Ni, and Cu, doped MoS2. Two supercells (3 × 3 × 1 and 2 × 2 × 1) were designed and the same element was doped in both supercells to observe the effect of dopant on electronic, structural, and magnetic behavior of the host material. After the Cr, Mn, and Ni doping, a slight band gap was observed as compared to the pure material. However, Co shows the half metallic behavior in 3 × 3 × 1 supercell but it shows the metallic behavior after doping in 2 × 2 × 1 supercell. On the other hand, the doping of Cu determined the metallic behavior in both the selected supercells. Electronic behavior in terms of total density of states (TDOS) and partial density of states (PDOS) and how orbitals are participating in band formation are discussed in detail. From TDOS and band diagrams, it was found that, except Cr, all other doped elements induce magnetic moments in nonmagnetic MoS2. Our calculated results would give the detailed information on magnetic behavior of TMs doped MoS2 and their impact for application in efficient electronic and spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vogt, P., et al.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108 (15), 155501 (2012)

  2. Ci, L., et al.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  3. Wang, Q.H., et al.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  4. Chhowalla, M., et al.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263 (2013)

    Article  Google Scholar 

  5. Dean, C.R., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722 (2010)

    Article  ADS  Google Scholar 

  6. Lin, Y.-M., et al.: Wafer-scale graphene integrated circuit. Science 332(6035), 1294–1297 (2011)

    Article  ADS  Google Scholar 

  7. Lembke, D., Kis, A.: Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6(11), 10070–10075 (2012)

    Article  Google Scholar 

  8. Gierz, I., et al.: Atomic hole doping of graphene. Nano Lett. 8(12), 4603–4607 (2008)

    Article  ADS  Google Scholar 

  9. Fan, X.-L., An, Y.-R., Guo, W.-J.: Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res. Lett. 11(1), 154 (2016)

    Article  ADS  Google Scholar 

  10. Wang, H., et al.: Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 8(2), 566–575 (2015)

    Article  Google Scholar 

  11. Fang, Q., et al.: Structural stability and magnetic-exchange coupling in Mn-doped monolayer/bilayer MoS2. Phys. Chem. Chem. Phys. 20(1), 553–561 (2018)

    Article  Google Scholar 

  12. Andriotis, A.N., Menon, M.: Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B. 90(12), 125304 (2014)

  13. Wu, J.-C., et al.: Study of native defects and transition-metal (Mn, Fe Co, and Ni) doping in a zinc-blende CdS photocatalyst by DFT and hybrid DFT calculations. The Journal of Physical Chemistry C 115(13), 5675–5682 (2011)

    Article  Google Scholar 

  14. Tongay, S., et al.: Magnetic properties of MoS2: existence of ferromagnetism. Appl. Phys. Lett. 101(12), 123105 (2012)

  15. Segall, M., et al.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14(11), 2717 (2002)

    ADS  Google Scholar 

  16. Lu, S.-C., Leburton, J.-P.: Electronic structures of defects and magnetic impurities in MoS2 monolayers. Nanoscale Res. Lett. 9(1), 676 (2014)

    Article  ADS  Google Scholar 

  17. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)

    Article  Google Scholar 

  18. Bucko, T., et al.: Spin crossover transition of Fe (phen) 2 (NCS) 2: periodic dispersion-corrected density-functional study. Phys. Chem. Chem. Phys. 14(16), 5389–5396 (2012)

    Article  Google Scholar 

  19. Bucko, T., et al.: Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114(43), 11814–11824 (2010)

    Article  Google Scholar 

  20. Murnaghan, F.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30(9), 244–247 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  21. Bučko, T., et al.: Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids. Phys. Rev. B. 87(6), 064110 (2013)

  22. Naveh, D., Ramasubramaniam, A.: Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. in APS Meeting Abstracts. (2014)

  23. Zheng, J. and Liu, X.-L.: Scientific research. Appl. Math. 4(6) (2013)

  24. Nguyen, C.V., Hieu, N.N., Nguyen, D.T.: Dispersion-corrected density functional theory investigations of structural and electronic properties of bulk MoS2: effect of uniaxial strain. Nanoscale Res. Lett. 10(1), 433 (2015)

    Article  ADS  Google Scholar 

  25. Wilson, J.A., Yoffe, A.: The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969)

    Article  ADS  Google Scholar 

  26. Wang, Y., et al.: Defects engineering induced room temperature ferromagnetism in transition metal doped MoS2. Mater. Des. 121, 77–84 (2017)

    Article  Google Scholar 

  27. Ataca, C., et al.: A comparative study of lattice dynamics of three-and two-dimensional MoS2. The Journal of Physical Chemistry C 115(33), 16354–16361 (2011)

    Article  Google Scholar 

  28. Wang, Y., Li, S., Yi, J.: Electronic and magnetic properties of Co doped MoS2 monolayer. Sci. Rep. 6, 24153 (2016)

    Article  ADS  Google Scholar 

  29. Kumar, A., Ahluwalia, P.: A first principle comparative study of electronic and optical properties of 1H–MoS2 and 2H–MoS2. Mater. Chem. Phys. 135(2–3), 755–761 (2012)

    Article  Google Scholar 

  30. Zhu, Y., et al.: Strain tunable magnetic properties of 3d transition-metal ion doped monolayer MoS2: a first-principles study. AIP Advances. 8 (5), 055917 (2018)

  31. Rydberg, H., et al.: Van der Waals density functional for layered structures. Phys. Rev. Lett. 91 (12), 126402 (2003)

  32. Kadantsev, E.S., Hawrylak, P.: Electronic structure of a single MoS2 monolayer. Solid State Commun. 152(10), 909–913 (2012)

    Article  ADS  Google Scholar 

  33. Suh, J., et al.: Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 9(1), 199 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. Enyashin, A., Seifert, G.: Electronic properties of MoS2 monolayer and related structures. Haнocиcтeмы: физикa, xимия, мaтeмaтикa, 5(4) (2014)

  35. Wang, J., et al.: Robust ferromagnetism in Mn-doped MoS2 nanostructures, Appl. Phys. Lett. 109(9), 092401 (2016)

  36. Wu, M., et al.: Electronic structures, magnetic properties and band alignments of 3d transition metal atoms doped monolayer MoS2. Phys. Lett. A 382(2–3), 111–115 (2018)

    Article  ADS  Google Scholar 

  37. Luo, M., Xu, Y., Shen, Y.: Structural and magnetic properties of transition metal-adsorbed MoS2 monolayer. J. Supercond. Novel Magn. 30(10), 2849–2854 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Dr. Muhammad Shakil) is grateful to Higher Education Commission of Pakistan for supporting this work through NRPU-9574.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Shakil or M. Zafar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakil, M., Naz, A., Zeba, I. et al. Structural and Magnetic Behavior of MoS2 on Doping of Transition Metals: a DFT Study. J Supercond Nov Magn 34, 3441–3453 (2021). https://doi.org/10.1007/s10948-021-06074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06074-8

Keywords

Navigation