Skip to main content
Log in

Negative Magnetization and Superconductivity in the (LaPt2Asx (x = 1, 2) and BaPt2As2 Compounds

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have investigated the electrical and magnetic properties of the compounds LaPt2As, LaPt2As2, and BaPt2As2 prepared by conventional solid-state reaction, in the temperature range of 5–300 K, up to the field of H = 9 T. The zero-field cooled magnetization (MZFC) and field cooled magnetization (MFC) split into two branches at the bifurcation temperatures due to large thermal hysteresis effects. A huge diamagnetic magnetization has been manifested on the MZFC branches in both samples. We describe different possible scenarios of the negative magnetization-like behavior. First, this huge diamagnetic signal may arise from some local nano-sized ferromagnetic clusters subjected to the negative internal field, which is originated from the local distortions in the electronic structure due to the inhomogeneous Pt atoms distributions. The second is suggested as an alternative model, so that the present phenomenon was not a true negative magnetization, the observed negative magnetization, in fact, is relative change in the magnetization. It may arise from the freezing spins at lower temperatures. The magnetic analysis reveals the development of superconductivity with a filamentary character at temperatures below 10 K for the sample LaPt2As and 22 K for the sample LaPt2As2. In order to prove the observed superconductivity, their critical current density, Jc(H), and the normalized pinning force, Fp/Fp,max, are obtained as a function of the applied field, and the types of flux pinning centers are identified using the conventional Beans and Dew-Hughes models. We report the resistivity data in the same temperature interval. The resistivity curves are fitted to the form \(\uprho\)(T) = ρ0 + ρ1Tα + ρ2exp (− To/T) over the entire range of the measurement temperatures. The last term presents a magnon-assisted inter-band electron–phonon electron scattering mechanism. In addition, we observe an anomaly around 115 K in LaPt2As2 associated with the charge density (CDW) phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Nohara, M., Kakiya, S., Kudo, К.: Superconductivity in Ca-Fe-Pt-As at 38 K. Proc. Int. Workshop Novel Supercond. Super Mater. a-41 (2011)

  2. Cho, K., Tanatar, M.A., Kim, H., Straszheim, W.E., Ni, N., Cava, R.J., Prozorov, R.: Doping-dependent superconducting gap anisotropy in the two-dimensional pnictide Ca10(Pt3As8)[(Fe1−xPtx)2As2]5. Phys. Rev. B. 85, 020504(R) (2012)

    Article  ADS  Google Scholar 

  3. Nohara, M., Kakiya, S., Kudo, K., Oshiro, Y., Araki, S., Kobayashi, T.C., Oku, K., Nishibori, E., Sawa, H.: Iron–platinum–arsenide superconductors Ca10(PtnAs8)(Fe2−xPtxAs2)5. Solid State Commun. 152, 635 (2012)

    Article  ADS  Google Scholar 

  4. Xiang, Z.J., Luo, X.G., Ying, J.J., Wang, X.F., Yan, Y.J., Wang, A.F., Cheng, P., Ye, G.J., Chen, X.H.: Transport properties and electronic phase diagram of single-crystalline Ca10(Pt3As8)((Fe1−xPtx)2As2)5. Phys. Rev. B. 85, 224527 (2012)

  5. Nishikubo, Y., Kudo, K., Nohara, M.: Superconductivity in the Honeycomb-Lattice Pnictide SrPtAs. J. Phys. Soc. Jpn. 80, 055002 (2011)

  6. Goryo, J., Fischer, M.H., Sigrist, M.: Possible pairing symmetries in SrPtAs with a local lack of inversion center. Phys. Rev. B 86, 100507(R) (2012)

    Article  ADS  Google Scholar 

  7. Butch, N.P., Syers, P., Kirshenbaum, K., Hope, A.P., Paglione, J.: Superconductivity in the topological semimetal YPtBi. Phys. Rev. 84, 220504(R) (2011)

    Article  ADS  Google Scholar 

  8. Ouardi, S., Shekhar, C., Gerhard, Fecher, H., Kozina, X., Stryganyuk, G., Felser, C., Ueda, S., Kobayashi, K.: Electronic structure of Pt based topological Heusler compounds with C1b structure and “zero band gap”. Appl. Phys. Lett. 98, 211901 (2011)

  9. Chadov, S., Qi, X., Kubler, J., Fecher, G.H., Felser, C., Zhang, S.C.: Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mat. 9, 541–545 (2010)

    Article  Google Scholar 

  10. Kudo, K., Nishikubo Y., Nohara, M.M.: Coexistence of superconductivity and charge density wave in SrPt2As2. J. Phys. Soc. Jpn. 79, 123710 (2010)

  11. Xu, X., Chen, B., Jiao, W.H., Chen, B., Niu, C. Q., Li, Y.K., Yang, J.H., Bangura, A.F., Ye, Q.L., Cao, C., Dai, J.H., Cao, G., Hussey, N.E.: Evidence for two energy gaps and Fermi liquid behavior in the SrPt2As2 superconductor. Phys. Rev. B. 87, 224507 (2013)

  12. Shein R., Ivanovskii, A.L.: Electronic band structure, Fermi surface, and elastic properties of polymorphs of the 5.2 K iron-free superconductor SrPt2As2 from first-principles calculations. Phys. Rev. B. 83, 104501 (2011)

  13. Xu, X., Chen, B., Jiao, W.H., Chen, B., Niu, C. Q., Li, Y.K., Yang, J.H., Bangura, A.F., Ye, Q.L., Cao, C., et al.: Evidence for two energy gaps and Fermi liquid behavior in the SrPt2As2 superconductor. Phys. Rev. B. 87, 224507 (2013)

  14. Li, W., Zhen, W., Shi, H.L., Zhen, C., Chiang, F.K., Tian, H.F., Yang, H.X., Fang, A.F., Wang, N.L., Li, J.Q.: Two-coupled structural modulations in charge-density-wave state of SrPt2As2 superconductor. Chin. Phys. B. 23, 086103 (2014)

  15. Jiang, W.B., Guo, C.Y., Weng, Z.F., Wang, Y.F., Chen, Y.H., Chen, Y., Pang, G.M., Shang, T., Lu, X., Yuan, H.Q.: Superconductivity and structural distortion in BaPt2As2. J. Phys.: Condens. Matter. 27, 022202 (2015)

  16. Guo, C.Y., Jiang, W.B., Smidman, M.F., Han, C.D., Malliakas, B., Shen, Y.F., Wang, Y.: Superconductivity and multiple pressure-induced phases in BaPt2As2. Phys. Rev. B. 94, 184506 (2016)

  17. Imai, M., Emura, S., Nishio, M., Matsushita, Y., Ibuka, S., Eguchi, N., Ishikawa, F., Yamada, Y., Muranaka, T., Akimitsu, J.: Superconductivity in 122 antimonide SrPt2Sb2. Supercond. Sci. Technol. 26, 075001 (2013)

  18. Imai, M., Ibuka, S., Kikugawa, N., Terashima, T., Uji, S., Yajima, T., Kageyama, H., Hase, I.: Superconductivity in 122-type antimonide BaPt2Sb2. Phys. Rev. B. 91, 014513 (2015)

  19. Ritu, G., Dhar, S.K., Thamizhavel, A., Rajeev, K.P., Hossain, Z.: Superconducting and charge density wave transition in single crystalline LaPt2Si2. J. Phys.: Condens. Matter. 29, 255601 (2017)

  20. Ritu, G., Paramania, U.B., Ramakrishnan, S., Rajeev, K.P., Hossain, Z.: Coexistence of superconductivity and a charge density wave in LaPt2(Si1−xGex)2 (0 ≤ x ≤ 0.5). J. Phys.: Condens. Matter. 28, 195702 (2016)

  21. Sooran, K., Kyoo, K., Min, B.I.: The mechanism of charge density wave in Pt-based layered superconductors: SrPt2As2 and LaPt2Si2. Sci. Rep. 5, 15052 (2015)

    Article  Google Scholar 

  22. Falkowski, M., Doležal, P., Andreev, A.V., Duverger-Nédellec, E., Havela, L.: Structural, thermodynamic, thermal, and electron transport properties of single-crystalline LaPt2Si2. Phys. Rev. B. 100, 064103 (2019)

  23. Shen, B., Du, F., Li, R., Thamizhave, A., Smidman, M., Nie, Z.Y., Luo, S.S., Le, T., Hossain, Z., Yuan, H.Q.: Evolution of charge density wave order and superconductivity under pressure in LaPt2Si2. Phys. Rev. B. 101, 144501 (2020)

  24. Nie, Z.Y., Yin, L.C., Thamizhavel, A., Wang, A., Shen, B., Che, L.Q., Du, F., Hossain Z., Smidman, M., Lu, X., Yuan, H.Q.: Nodeless superconductivity in the charge density wave superconductor LaPt2Si2. Phys. Rev. B. 103, 014515 (2021)

  25. Yutaro, N., Nobutaka, A., Akihiro, M., Hideki, Y., Hirofumi, W., Masaki, I.: Charge density wave and superconductivity of RPt2Si2 (R = Y, La, Nd, and Lu). J. Phys. Soc. Jpn. 82, 064715 (2013)

  26. Alexander, L.I.: Platinum-based and platinum-doped layered superconducting materials: synthesis, properties and simulation platinum. Metals Rev. 57, 2 (2013)

    Google Scholar 

  27. Aoki, Y., Sumiyama, A., Shiotsuki, M., Motoyama, G., Yamaguchi, A., Oda, Y., Yasuda, T., Settai R., Ōnuki, Y.: Josephson Effect between noncentrosymmetric LaPt3Si and a conventional superconductor. J. Phys. Soc. Jpn. 79, 12 124707 (2010)

  28. Uzunok, H.Y., Tutuncu, H.M., Srivastava, G.P., Basoglu, A.: The influence of spin orbit interaction on phonons and superconductivity in the non-centrosymmetric superconductors LaPt3Si and LaPtSi3. Intermetallics 86, 1–10 (2017)

    Article  Google Scholar 

  29. Bauer, E., et al.: Heavy fermion superconductivity and magnetic order in non-centrosymmetric CePt3Si. Phys. Rev. Lett. 92, 027003 (2004)

  30. Takashi, Y., Hiroaki, S., Taiki, U., Shin, H., Rikio, S., Tetsuya, T., Tatsuma, D.M., Yoshinori, H., Yoshichika, O.: Superconducting property in CePt3Si under pressure. J. Phys. Soc. Jap. 73, 1657–1660 (2004)

    Article  Google Scholar 

  31. Gaku, M., Katsuhiro, M., Yasukage, O.: Specific heat study of magnetic and superconducting transitions in CePt3Si. J. Phys. Soc. 77, 044710 (2008)

  32. Fujioka, M., Ishimaru, M., Shibuya, T., Kamihara, Y., Tabata, C., Amitsuka, H., Miura, A., Tanaka, M., Takano, Y., Kaiju, H., Nishii, J.: Discovery of the Pt-Based superconductor LaPt5As. J. Am. Chem. Soc. 138, 9927–9934 (2016)

    Article  Google Scholar 

  33. Yoshiyuki, Y., Takahiro, M., Yutaka, N., Toshiharu, T., Mikio, M., Hidenobu, H.: Magnetic properties of the noble metal nanoparticles protected by polymer. Physica B. 329, 1183–1184 (2003)

    ADS  Google Scholar 

  34. Vijay, K., Yoshiyuki, K.: Evolution of atomic and electronic structure of Pt clusters: planar, layered, pyramidal, cage, cubic, and octahedral growth. Phys. Rev. B. 77, 205418 (2008)

  35. Huda, M.N., Manish, K., Niranjan, B.R., Leonard, K.: Effect of spin-orbit coupling on small platinum nanoclusters. Phys. Rev. A. 73, 053201 (2006)

  36. Oner, Y., Avci, S.: Electronic and magnetic properties of Pt based intermetalic LaPtAs and LaPt2As compounds. J. Elect. Matt. 48, 2200–2208 (2019)

    Article  ADS  Google Scholar 

  37. Nitesh, K., Sundaresan, A.: On the observation of negative magnetization under zero-field-cooled process. Solid State Commun. 150, 11621164 (2010)

    Google Scholar 

  38. Moshchalkov, V.V., Henry, J.Y., Marin, C., Rossat, M.J., Jacquot, J.F.: Anisotropy of the first critical field and critical current in YBa2Cu306.9 single crystals. Phys. C. 175, 407–418 (1991)

  39. Abdel-Hafiez, M., Ge, J., Vasiliev, A.N., Chareev, A.D., Van de Vondel, J., Moshchalkov, J.J., Silhanek A.V.: Temperature dependence of lower critical field Hc1(T) shows nodeless superconductivity in FeSe. Phy. Rev. B. 88, 174512 (2013)

  40. Poole Jr, C.: Phenomenon of superconductivity. In: Richard J. C., In superconductivity, pp 34–84. Elsevier Sci. (2014)

  41. Koyama, T., Takezawa, N., Tachiki, M.: Anomalous temperature dependence of Hc1 in layered oxide superconductors. Physica C 168, 69–78 (1990)

    Article  ADS  Google Scholar 

  42. Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31–39 (1964)

    Article  ADS  Google Scholar 

  43. Campbell, A.M., Evetts, J.E.: Flux vortices and transport currents in type II superconductors. Adv. Phys. 21, 199 (1972)

    Article  ADS  Google Scholar 

  44. Koblischka, M.R., Higuchi, T., Yoo, S.I., Murakani, M.: Scaling of pinning forces in NdBa2Cu3O7−δ superconductors. J. Appl. Phys. 85, 3241 (1999)

    Article  ADS  Google Scholar 

  45. Klein, L., Yacoby, E.L., Yeshurun, Y., Erb, A., Muller- Vogt, G., Breit, V., Wuhl, H.: Peak effect and scaling of irreversible properties in untwinned Y-Ba-Cu-0 crystals. Phys. Rev. B. 49, 4403 (1994)

    Article  ADS  Google Scholar 

  46. Yamasaki, H., Endo, K., Kosaka, S., Umeda, M., Yoshida, S., Kajimaar, K.: Scaling of the flux pinning force in epitaxial Bi2Sr2Ca2Cu3Ox thin films. Phys. Rev. Lett. 70, 3331 (1993)

    Article  ADS  Google Scholar 

  47. Michael, R.K., Miryala, M.: Pinning force scaling analysis of Fe-based high-Tc superconductors. Int. Jour. Mod. Phys. B. 30, 1630017 (2016)

    Article  Google Scholar 

  48. Oner, Y., Boyraz, C.: Effects of Pt and La doping on the superconductivity of CaFe2As2: Kondo effects. Intermetallics. 129, 107026 (2021)

  49. Morup, S., Frandsen, C.: Thermoinduced magnetization in nanoparticles of antiferromagnetic materials. Phys. Rev. Lett. 92, 217201 (2004)

  50. Nguyen, G.D., Fu, M., Zou, Q., Sanjeewa, L.D., Li, A.P., Sefat, S., Gai, Z.: Nanoscale superconducting states in the Fe-based filamentary superconductor of Pr-doped CaFe2As2. Nanomaterials 11, 1019 (2021)

    Article  Google Scholar 

  51. Xiao, H., Hu,T., Dioguardi, A.P., Warren, N., Shockley, A.C., Crocker, J. et al.: Evidence for filamentary superconductivity nucleated at antiphase domain walls in antiferromagnetic CaFe2As2. Phy. Rev. B. 85, 024530 (2012)

  52. Shuyuan, H.,Yanfeng, L., Hua, W., Liangzi, D., Zheng, W., Bing, L., et al.: Interfacial superconductivity achieved in parent AEFe2As2 (AE = Ca, Sr, Ba) by a simple and realistic annealing route. Nano Lett. 21, 2191−2198 (2021)

  53. Paulsen, C., Hykel, D.J., Hasselbach, K., Aoki, D.: Observation of the Meissner-Ochsenfeld effect and the absence of the Meissner state in UCoGe. PRL 109, 237001 (2012)

  54. Vasily, S.S., Ivan, S., Veshchunov, S.Y., Buzdin, A.I., Dimitri, R.: Domain Meissner state and spontaneous vortex-antivortex generation in the ferromagnetic superconductor EuFe2(As0.79P0.21).Sci. Adv. 4, 1–7 (2018)

  55. Khaymovich, I.M., Mel’nikov, A.S., Buzdin, A.I.: Phase transitions in the domain structure of ferromagnetic superconductors. Phys. Rev. B 89, 094524 (2014)

  56. Sonin, E.B.: Domain structure of superconducting ferromagnets. Phys. Rev. B. 66, 100504 (2002)

  57. Oner, Y., Boyraz, C., Guler, A.: Domain structure effect on the superconductivity of BaFePtAs2. Physica C: Superconductivity and its applications. 574, 1353665 (2020)

    Article  ADS  Google Scholar 

  58. Oner, Y., Boyraz, C.: Low field magnetic and electric transport properties of LaFeAsO and oxygen deficiency of LaFeAsOx. Jour. Elec. Matt. 50, 1090–1101 (2021)

    Article  ADS  Google Scholar 

  59. Neel, L.: Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Ann. Phys. 3, 137 (1948)

    Article  Google Scholar 

  60. Niidera, S., Matsubara, F.: Fluctuating clusters in a reentrant spin-glass system. Phys. Rev. B. 75, 144413 (2007)

  61. Menyuk, N., Dwight, K., Wickham, D.G.: Magnetization reversal and asymmetry in cobalt vanadate (IV). Phys. Rev. Lett. 4, 119 (1960)

    Article  ADS  Google Scholar 

  62. Shirakawa, N., Ishikawa, M.: Anomalous diamagnetism of a perovskite LaVO3. Jpn. J. Appl. Phys. 30, 755 (1991)

    Article  ADS  Google Scholar 

  63. Mahajan, A.V., Johnston, D.C., Torgeson, D.R., Borsa, F.: Magnetic properties of LaVO. Phys. Rev. B. 46, 10966 (1992)

    Article  ADS  Google Scholar 

  64. Ren, Y., Palstra, T.T.M., Khomskii, D.I., Pellegrin, E., Nugroho, A.A., Menovsky, A.A., Sawatzky, G.A.: Temperature-induced magnetization reversal in a YVO3 single crystal. Nature 396, 441–444 (1998)

    Article  ADS  Google Scholar 

  65. Ren, Y., Palstra, T.T.M., Khomskii, D.I., Nugroho, A.A., Menovsky, A.A., Sawatzky, G.A.: Magnetic properties of YVO3 single crystals. Phys. Rev. B. 62, 6577 (2000)

    Article  ADS  Google Scholar 

  66. Kimishima, Y., Chiyanagi, Y., Shimizu, K., Mizuno, T.: N-type ferrimagnetism of SmVO3. J. Magn. Magn. Mater. 210, 244 (2000)

    Article  ADS  Google Scholar 

  67. Kimishima, Y., Uehara, M., Saitoh, T.: Ca-doping effects on N-type ferrimagnetism of NdVO3. Solid State Commun. 133, 559 (2005)

    Article  ADS  Google Scholar 

  68. Adachi, H., Ino, H.: A ferromagnet having no net magnetic moment. Nature 401, 148 (1999)

    Article  ADS  Google Scholar 

  69. Cooke, A.H., Martin, D.M., Wells, M.R.: Magnetic interactions in gadolinium orthochromite, GdCr03. J. Phys. C: Solid State Phys. 7, 31333 (1974)

    Article  Google Scholar 

  70. Yoshii, K.: Magnetic properties of perovskite GdCrO3. J. Solid State Chem. 159, 204 (2001)

    Article  ADS  Google Scholar 

  71. Yoshii, K.N.A., Ishii, Y., Morii, Y.: Magnetic properties of La1−xPrxCrO3 2001. J. Solid State Chem. 162, 84 (2001)

    Article  ADS  Google Scholar 

  72. Oner, Y., Lue, C.S., Ross, J.H., Rathnayaka, K.D.D., Naugle, D.G.: Thermomagnetic hysteresis effects in NiMn and NiMnPd thin films. Jour. App. Phys. 89, 7044–7046 (2001)

    Article  ADS  Google Scholar 

  73. Felner, I.: Superconductivity and unusual magnetic behavior in amorphous carbon, Mater. Res. Express. 1, 016001 (2014)

  74. Yoseph, I., Shang-keng, M.: Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35, 1399 (1975)

    Article  ADS  Google Scholar 

  75. Krusin-Elbaum, L., Civale, L., Vinokur, V.M., Holtzberg, F.: “Phase diagram” of the vortex-solid phase in Y-Ba-Cu-O crystals: a crossover from single-vortex (1D) to collective (3D) pinning regimes. Phys. Rev. Lett. 69, 2280 (1992)

    Article  ADS  Google Scholar 

  76. Wilson, A.H.: The electrical conductivity of the transition metals. Proc. R. Soc. London 167, 580 (1938)

    ADS  Google Scholar 

  77. MacDonald, A.H., Taylor, R., Geldart, D.J.W.: Umklapp electron-electron scattering and the low-temperature electrical resistivity of the alkali metals. Phys. Rev. B. 23, 2718 (1981)

    Article  ADS  Google Scholar 

  78. Landau, L.D.: The theory of a fermi liquid. Zh. Eksp. Teor. Fiz. 30, 1058 (1956)

  79. Oner, Y., Boyraz, C., Hiramatsu, H., Katase, T., Hosono, H.: Coexistence of magnetism and superconductivity in thin films of the Fe-based superconductor Ba1-xLaxFe2As2. Jour. Phys. Cond. Matt. 32, 485804 (2020)

  80. Meaden, G.T.: Electrical resistivity of metals. P-98. Springer, Plenum, New York (1965)

  81. Mathon, J.: Magnetic and electrical properties of ferromagnetic alloys near the critical concentration. Proc. R. Soc. Lond. A. 306, 355–368 (1968)

    Article  ADS  Google Scholar 

  82. Sergeenkov, S., Cichetto, L., Longo, E., Araujo-Moreira, F.M.: Evidence for resonant scattering of electrons by spin fluctuations in LaNiO3/LaAlO3 heterostructures grown by pulsed laser deposition. Jetp Lett. 102, 383–386 (2015)

    Article  ADS  Google Scholar 

  83. Smith, M.F.: Small angle interband scattering as the origin of the T3/2 resistivity in MnSi. Phys. Rev. B. 74, 172403 (2006)

  84. Gasparov, V.A., Wolff, F.F., Sun, D.L., Lin, C.T., Wosnitz, J.: Electron transport and anisotropy of the upper critical magnetic field in Ba0.68K0.32Fe2As2 single crystals. JETP Lett. 93, 26–30 (2011)

Download references

Acknowledgements

We thank Dr. Adil Guler for sample preparation. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yildirhan Oner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oner, Y., Boyraz, C. Negative Magnetization and Superconductivity in the (LaPt2Asx (x = 1, 2) and BaPt2As2 Compounds. J Supercond Nov Magn 34, 3175–3198 (2021). https://doi.org/10.1007/s10948-021-06073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06073-9

Keywords

Navigation