Skip to main content
Log in

Nanocomposite Permanent Magnets Based on SrFe12O19-Fe3O4 Hard-Soft Ferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nanocomposites consisting of strontium ferrite and magnetite are prepared to investigate the effect of exchange coupling between the hard and soft magnetic phases. Hexagonal strontium ferrite, SrFe12O19, synthesized using a solid-state route involving the sintering of precursors at 1000 °C gives a coercivity value as high as 3.73 kOe. An increase in the sintering temperature results in an increase in particle size and a decrease in coercivity. The soft ferrite phase Fe3O4 synthesized by a reverse co-precipitation method shows a saturation magnetization as high as 84 emu/g. Simple homogenous mixing of soft and hard components resulted in an exchange-coupled magnetic nanocomposite. With an increase in the soft magnetic content, the magnetization of the composite increases while the coercivity decreases. On sintering the nanocomposites at 1000 °C, coercivity remains intact even for an increasing soft magnetic content indicating an exchange decoupling between the soft and hard phases. This is attributed to the phase transformation of Fe3O4 to α-Fe2O3 at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Coey, J.M.D.: Permanent magnet applications. J. Magn. Magn. Mater. 248, 441–456 (2002). https://doi.org/10.1016/S0304-8853(02)00335-9

    Article  ADS  Google Scholar 

  2. Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P.: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011). https://doi.org/10.1002/adma.201002180

    Article  Google Scholar 

  3. Skomski, R., Coey, J.M.D.: Giant energy product in nanostructured two-phase magnets. Phys. Rev. B. 48, 15812–15816 (1993). https://doi.org/10.1103/PhysRevB.48.15812

    Article  ADS  Google Scholar 

  4. Buschow, K.H.J., de Boer, F.R.: Physics of magnetism and magnetic materials. Springer, Boston, MA, (2003). https://doi.org/10.1007/b100503

  5. Guo, Z.B., Ding, W.P., Zhong, W., Zhang, J.R., Du, Y.W.: Preparation and magnetic properties of SrFe12O19 particles prepared by the salt-melt method. J. Magn. Magn. Mater. 175, 333–336 (1997). https://doi.org/10.1016/S0304-8853(97)00206-0

    Article  ADS  Google Scholar 

  6. Park, J., Hong, Y.K., Kim, S.G., Kim, S., Liyanage, L.S.I., Lee, J., Lee, W., Abo, G.S., Hur, K.H., An, S.Y.: Maximum energy product at elevated temperatures for hexagonal strontium ferrite (SrFe12O19) magnet. J. Magn. Magn. Mater. 355, 1–6 (2014). https://doi.org/10.1016/j.jmmm.2013.11.032

    Article  ADS  Google Scholar 

  7. Kneller, E.F., Hawig, R.: The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588–3600 (1991). https://doi.org/10.1109/20.102931

    Article  ADS  Google Scholar 

  8. Remya, K.P., Prabhu, D., Amirthapandian, S., Viswanathan, C., Ponpandian, N.: Exchange spring magnetic behavior in BaFe12O19/Fe3O4 nanocomposites. J. Magn. Magn. Mater. 406, 233–238 (2016). https://doi.org/10.1016/j.jmmm.2016.01.024

    Article  ADS  Google Scholar 

  9. Zeng, Q., Jiang, D., Yang, S.: Enhancement of magnetic properties in hard/soft CoFe2O4/ Fe3O4 nanocomposites. RSC Adv. 6, 46143–46148 (2016). https://doi.org/10.1039/c6ra02993k

    Article  ADS  Google Scholar 

  10. Volodchenkov, A.D., Kodera, Y., Garay, J.E.: Synthesis of strontium ferrite/iron oxide exchange coupled nano-powders with improved energy product for rare earth free permanent magnet applications. J. Mater. Chem. C. 4, 5593–5601 (2016). https://doi.org/10.1039/c6tc01300g

    Article  Google Scholar 

  11. Roy, D., Anil Kumar, P.S.: Exchange spring behaviour in SrFe12O19-CoFe2O4 nanocomposites. AIP Adv. 5, 077137 (2015). https://doi.org/10.1063/1.4927150

  12. Liu, X., Zhong, W., Gu, B., Du, Y.: Exchange-coupling interaction in nanocomposite SrFe12O19/γ-Fe2O3 permanent ferrites. J. Appl. Phys. 92, 1028–1032 (2002). https://doi.org/10.1063/1.1487908

    Article  ADS  Google Scholar 

  13. Xia, A., Zuo, C., Zhang, L., Cao, C., Deng, Y., Xu, W., Xie, M., Ran, S., Jin, C., Liu, X.: Magnetic properties, exchange coupling and novel stripe domains in bulk SrFe12O19/(Ni, Zn) Fe_2O_4 composites. J. Phys. D. Appl. Phys. 47, 415004 (2014). https://doi.org/10.1088/0022-3727/47/41/415004

    Article  Google Scholar 

  14. Mohseni, F., Pullar, R.C., Vieira, J.M., Amaral, J.S.: Bonded ferrite-based exchange-coupled nanocomposite magnet produced by warm compaction. J. Phys. D. Appl. Phys. 53, 494003 (2020). https://doi.org/10.1088/1361-6463/abb0bd

    Article  Google Scholar 

  15. Petrecca, M., Muzzi, B., Oliveri, S.M., Albino, M., Yaacoub, N., Peddis, D., De Julián Fernández, C., Innocenti, C., Sangregorio, C.: Optimizing the magnetic properties of hard and soft materials for producing exchange spring permanent magnets. J. Phys. D. Appl. Phys. 54, 134003 (2021). https://doi.org/10.1088/1361-6463/abd354

  16. Dahal, J.N., Neupane, D., Poudel, T.P.: Synthesis and magnetic properties of 4:1 hard-soft SrFe12O19-La1-xSrxMnO3 nanocomposite prepared by auto-combustion method. AIP Adv. 9, 075308 (2019). https://doi.org/10.1063/1.5096530

    Article  ADS  Google Scholar 

  17. Xu, X., Hong, Y.K., Park, J., Lee, W., Lane, A.M.: Ex situ synthesis of magnetically exchange coupled SrFe12O19/Fe-Co composites. AIP Adv. 6, 056026 (2016). https://doi.org/10.1063/1.4944703

    Article  ADS  Google Scholar 

  18. Viet Nga, T.T., Lan, N.T.: Fabrication and exchange-spring properties of SrFe12O19@Fe3O4 nanocomposites with core-shell structure. Mater. Chem. Phys. 251, 123084 (2020). https://doi.org/10.1016/j.matchemphys.2020.123084

  19. Verma, A., Pandey, O.P., Sharma, P.: Strontium ferrite permanent magnet - an overview, Indian J. Eng. Mater. Sci. 7, 364–369 (2000). https://doi.org/10.1002/chin.200138258

    Article  Google Scholar 

  20. İçi̇n, K., Öztürk, S., Çakil, D.D., Sünbül, S.E.: Effect of the stoichiometric ratio on phase evolution and magnetic properties of SrFe12O19 produced with mechanochemical process using mill scale. Ceram. Int. 46, 14150–14160 (2020). https://doi.org/10.1016/j.ceramint.2020.02.222

  21. Cullity, B.D., Graham, C.D.: Introduction to magnetic materials. Second ed., John Wiley and Sons. (2009). https://doi.org/10.1002/9780470386323

  22. Park, J., Hong, Y.K., Lee, W., An, S.Y., Seo, J.W., Hur, K.H.: Coercivity of SrFe12O19 hexaferrite platelets near single domain size. IEEE Magn. Lett. 6, 5500203 (2015). https://doi.org/10.1109/LMAG.2015.2460215

    Article  Google Scholar 

  23. Chen, D.H., Chen, Y.Y.: Synthesis of strontium ferrite ultrafine particles using microemulsion processing. J. Colloid Interface Sci. 236, 41–46 (2001). https://doi.org/10.1006/jcis.2000.7389

    Article  ADS  Google Scholar 

  24. Wang, J., Sun, J., Sun, Q., Chen, Q.: One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 38, 1113–1118 (2003). https://doi.org/10.1016/S0025-5408(03)00129-6

    Article  Google Scholar 

  25. Erokhin, S., Berkov, D.: Optimization of nanocomposite materials for permanent magnets: micromagnetic simulations of the effects of intergrain exchange and the shapes of hard grains. Phys. Rev. Appl. 7, 014011 (2017). https://doi.org/10.1103/PhysRevApplied.7.014011

    Article  ADS  Google Scholar 

  26. Kazeminezhad, I., Mosivand, S.: Phase transition of electrooxidized Fe3O4 to γ and α-Fe2O3 nanoparticles using sintering treatment. Acta Phys. Pol. A. 125, 1210–1214  (2014). https://doi.org/10.12693/APhysPolA.125.1210

Download references

Acknowledgements

This work is financially supported by the Cochin University of Science and Technology via SMNRI Grant (No. PL.(UGC)1/SPG//SMNRI/2017-18 dated 02/11/2017) and University Grants Commission via Start-up Grant (No. F.30-415/2018(BSR) dated 06/02/2019). SAS acknowledges the Junior Research Fellowship received from the Science and Engineering Research Board (No. ECR/2017/001782 dated 04/10/2018). Fruitful discussions with Navya Joseph and Archana V N are gratefully acknowledged. The authors acknowledge DST-FIST for creating the FE-SEM facility at the Department of Physics, Cochin University of Science and Technology, Kochi, Kerala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senoy Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sam, S.A., Balan, A.P., Kaipamangalath, A. et al. Nanocomposite Permanent Magnets Based on SrFe12O19-Fe3O4 Hard-Soft Ferrites. J Supercond Nov Magn 34, 3333–3344 (2021). https://doi.org/10.1007/s10948-021-06070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06070-y

Keywords

Navigation