Skip to main content
Log in

Generic Hubbard Hamiltonian for 1D Large-Spin Ultracold Fermionic Chains

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A new version of the generalized Hubbard Hamiltonian is introduced here for high-spin ultracold fermions, which was used to study a spin-5/2 fermionic lattice numerically. The number of states in the energy multiplets agrees with the dimensions of low-order irreducible representations (IRs) for the symmetries expected. Furthermore, the exact diagonalization (ED) technique and the nearest-neighbor Casimir-Casimir correlations were employed to investigate numerically the quantum-phase transitions of 1D ultracold spin-3/2 fermionic lattices. With these IRs it was possible to explain the appearance of the symmetries in 1D ultracold spin-3/2 fermionic chains at quarter filling (one particle per site) and for repulsive interactions. Young’s diagrams were used to explain graphically the absence of exchange interactions for the SU(4) model. It is relevant that the generalized Hubbard Hamiltonian could be used to compute the hidden symmetries and reduce the problem complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature. 415, 39 (2002)

    Article  ADS  Google Scholar 

  2. U. Schneider, L. Hackermüller, S. Will, Th. Best, I. Bloch, T. A. Costi, R. W. Helmes, D. Rasch, and A. Rosch, Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice, Science. 322, 1520 (2008)

    Article  ADS  Google Scholar 

  3. R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger, A mott insulator of fermionic atoms in an optical lattice, Nature. 455, 204 (2008)

    Article  ADS  Google Scholar 

  4. J. Dobrzyniecki and T. Sowiński, Simulating artificial 1D physics with ultra-cold Fermionic atoms: three exemplary themes, Adv. Quantum Technol. 3 2000010 (2020)

    Article  Google Scholar 

  5. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De) and U. Sen, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, Advances in Physics. 56 243 (2007)

  6. D. P. Arovas and A. Auerbach, Functional integral theories of low-dimensional quantum Heisenberg models, Phys. Rev. B. 38 316 (1988)

    Article  ADS  Google Scholar 

  7. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science. 269 198 (1995)

    Article  ADS  Google Scholar 

  8. K. B. Davis, M.-O. Mewes, M. A. Joffe, M. R. Andrews, and W. Ketterle, Evaporative cooling of sodium atoms, Phys. Rev. Lett. 74 5202 (1995)

    Article  ADS  Google Scholar 

  9. C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78, 586 (1997)

    Article  ADS  Google Scholar 

  10. D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Optical confinement of a Bose-Einstein condensate, Phys. Rev. Lett. 80, 2027 (1998)

    Article  ADS  Google Scholar 

  11. J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, and W. Ketterle, Spin domains in ground-state Bose-Einstein condensates, Nature. 396, 345 (1998)

    Article  ADS  Google Scholar 

  12. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80 885 (2008)

    Article  ADS  Google Scholar 

  13. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nat. (London). 415 39 (2002)

  14. R. Jördens, N. Strohmaier, K. Günter, H. Moritz, T. Esslinger, A Mott insulator of fermionic atoms in an optical lattice, Nat. (London). 455 204 (2008)

  15. U. Schneider, L. Hackermuller, S. Will, Th. Best, I. Bloch, T. A. Costi, R. W. Helmes, D. Rasch, A. Rosch, Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice, Science. 322 1520 (2008).

    Article  ADS  Google Scholar 

  16. C. A. Regal, M. Greiner and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92 040403 (2004)

    Article  ADS  Google Scholar 

  17. M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Condensation of pairs of fermionic atoms near a feshbach resonance, Phys. Rev. Lett. 92 120403 (2004)

    Article  ADS  Google Scholar 

  18. J. S. Krauser, U. Ebling, N. Fläschner, J. Heinze, K. Sengstock, M. Lewenstein, A. Eckardt, C. Becker, Giant spin oscillations in an ultracold fermi sea, Science. 343 157 (2014)

    Article  ADS  Google Scholar 

  19. P. Schlottmann. Ground-state and elemental excitations of the one-dimensional multicomponent Fermi gas with delta-function interaction, J. Phys. Condens. Matter. 6 1359 (1994)

    Article  ADS  Google Scholar 

  20. H.-H. Hung, Y. Wang, and C. Wu, Quantum magnetism in ultracold alkali and alkaline-earth fermion systems with symplectic symmetry, Phys. Rev. B. 84, 054406 (2011)

    Article  ADS  Google Scholar 

  21. S. Xu, J. T. Barreiro, Y. Wang, and C. Wu, Interaction effects with varying N in SU(N) symmetric fermion lattice systems, Phys. Rev. Lett. 121, 167205 (2018)

    Article  ADS  Google Scholar 

  22. E. Szirmai and M. Lewenstein, Exotic magnetic orders for high-spin ultracold fermions, EPL. 93, 66005 (2011)

    Article  ADS  Google Scholar 

  23. A. N. Wenz, T. Lompe, T. B. Ottenstein, F. Serwane, G. Zürn, and S. Jochim, Universal trimer in a three-component fermi gas, Phys. Rev. A. 80 040702(R) (2009)

    Article  ADS  Google Scholar 

  24. C. A. Regal and D. S. Jin, Measurement of positive and negative scattering lengths in a fermi gas of atoms, Phys. Rev. Lett. 90 230404 (2003)

    Article  ADS  Google Scholar 

  25. S. H. Glarum, S. Geschwind, K. M. Lee, M. L. Kaplan, and J. Michel, Observation of fractional spin S = 1/2 on open ends of S = 1 linear antiferromagnetic chains: Nonmagnetic doping, Phys. Rev. Lett. 67 1614 (1991)

    Article  ADS  Google Scholar 

  26. T. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi, Degenerate fermi gases of Ytterbium, Phys. Rev. Lett. 98 030401 (2007)

    Article  ADS  Google Scholar 

  27. J. F. Cornwell, Group theory in physics an introduction (Academic press, Cambridge, 1997)

    MATH  Google Scholar 

  28. C. Wu, J. P. Hu, and S. C. Zhang, Exact SO(5) symmetry in the spin-3/2 fermionic system, Phys. Rev. Lett. 91 186402 (2003)

    Article  ADS  Google Scholar 

  29. A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms, Nat. Phys. 6 289 (2010)

    Article  Google Scholar 

  30. C. Wu, Mott made easy, Nat. Phys. 8 784 (2012)

    Article  Google Scholar 

  31. J. Vijayan, P. Sompet, G. Salomon, J. Koepsell, S. Hirthe, A. Bohrdt, F. Grusdt, I. Bloch, and C. Gross, Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains, Science. 367 186 (2020)

    Article  ADS  Google Scholar 

  32. C. Wu, Hidden symmetry and quantum phases in spin-3/2 cold atomic systems, Mod. Phys. Lett. B. 20, 1707 (2006)

    Article  ADS  MATH  Google Scholar 

  33. C. Wu and S.-C. Zhang, Sufficient condition for absence of the sign problem in the fermionic quantum monte carlo algorithm, Phys. Rev. B. 71, 155115 (2005)

    Article  ADS  Google Scholar 

  34. H. Hara, Y. Takasu, Y. Yamaoka, J. M. Doyle, and Y. Takahashi, Quantum degenerate mixtures of alkali and alkaline-earth-like atoms, Phys. Rev. Lett. 106, 205304 (2011)

    Article  ADS  Google Scholar 

  35. B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian, Degenerate fermi gas of \(^{87}\)Sr, Phys. Rev. Lett. 105, 030402 (2010)

    Article  ADS  Google Scholar 

  36. S. Stellmer, R. Grimm, and F. Schreck, Production of quantum-degenerate strontium gases, Phys. Rev. A. 87, 013611 (2013)

    Article  ADS  Google Scholar 

  37. C. Wu, Competing orders in one-dimensional spin-3/2 fermionic systems, Phys. Rev. Lett. 95, 266404 (2005)

    Article  ADS  Google Scholar 

  38. C. Wu, J. Hu, and S.-C. Zhang, Quintet pairing and non-abelian vortex string in spin-3/2 cold atomic systems, Int. Jour. Mod. Phys. B, 24, 311 (2010)

    Article  ADS  MATH  Google Scholar 

  39. K. Sundermeyer, Symmetries in fundamental physics, (Springer, Cham, 2014)

    Book  MATH  Google Scholar 

  40. J. E. Humphreys, Introduction to Lie algebras and representation theory, (Springer-Verlag, New york, 1972)

    Book  MATH  Google Scholar 

  41. F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, V. E. Korepin, The one-dimensional Hubbard model, (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  42. J. J. Hernández-Sarria and K. Rodríguez, Energy spectrum analysis of 1D spin-3/2 fermionic chains, J. Supercond. Nov. Magn. 28 2809 (2015)

    Article  Google Scholar 

  43. K. Rodríguez, A. Argüelles, M. Colomé-Tatché, T. Vekua, and L. Santos, Mott-insulator phases of spin-3/2 fermions in the presence of quadratic zeeman coupling, Phys. Rev. Lett. 105 050402 (2010)

    Article  ADS  Google Scholar 

  44. Y. Jiang, X. Guan, J. Cao, and H.-Q. Lin, Exotic pairing in 1D spin-3/2 atomic gases with SO(4) symmetry, Nuclear Physics B. 895, 206 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. C. Joachain, Quantum collision theory, (North-holland publishing company, Amsterdam, 1975)

    Google Scholar 

  46. J. J. Hernández-Sarria, A. Argüelles, K. Rodríguez, Quantum magnetism in spin-3/2 chains, J. Phys.: Conf. Ser. 614 012005 (2015)

  47. K. Eckert, Ł. Zawitkowski, M. J. Leskinen, A. Sanpera, and M. Lewenstein, Ultracold atomic Bose and Fermi spinor gases in optical lattices, New J. Phys. 9, 133 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support from the Brazilian Agency FAPESP (process no. 2017/25587-5), and the support from CIBioFi and the Colombian Science, Technology and Innovation Foundation COLCIENCIAS Francisco José de Caldas under project 1106-712-49884 (contract no. 264-2016) and General Royalties System (Fondo CTeI-SGR) under contract no. BPIN 2013000100007. He is also grateful to Prof. Osvaldo N. Oliveira Jr from University of Sao Paulo for proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Hernández-Sarria.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Sarria, J.J. Generic Hubbard Hamiltonian for 1D Large-Spin Ultracold Fermionic Chains. J Supercond Nov Magn 34, 3431–3439 (2021). https://doi.org/10.1007/s10948-021-06057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06057-9

Keywords

Navigation