Skip to main content
Log in

Influence of Sintering Temperatures on the Phase Structure and Magnetic Properties of Spark Plasma Sintered SmCo5 Magnets

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

SmCo5 magnets were prepared by spark plasma sintering (SPS) technique. The phase constitutions, magnetic properties, and microstructures of magnets prepared under different sintering temperatures were investigated systematically. It is observed that the 1:5 phase and 2:7 phase coexist in the magnet, and 2:17 phase appears when the temperature rises to 1050 °C. The best magnetic properties were obtained for the magnets prepared at 1000 °C, with remanence Jr = 0.45 T, intrinsic coercivity Hcj = 985 kA/m, and maximum energy density (BH)max = 37 kJ/m3. It is shown that the SPSed magnet prepared at 1000 °C exhibits excellent thermal stability which is described in terms of temperature coefficient of remanence (α) = −0.15%/°C and temperature coefficient of coercivity (β) = −0.25%/°C in the temperature range of 27–400 °C. The microstructure analysis showed that the high density of the magnet and the uniform distribution of the hard magnetic phase are the main reasons for the excellent magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bian, L.P., Li, Y., Han, X.H., Cheng, J.Y., Qin, X.N., Zhao, Y.Q., Sun, J.B.: Effect of multi-element addition of Alnico alloying elements on structure and magnetic properties of SmCo5-based ribbons. Phys. B. 531, 1–8 (2020)

    Article  ADS  Google Scholar 

  2. Landa, A., Söderlind, P., Parker, D., Åberg, D., Lordi, V., Perron, A., Turchi, P.E.A., Chouhan, R.K., Paudyal, D., Lograsso, T.A.: Thermodynamics of the SmCo5 compound doped with Fe and Ni: an ab initio study. J. Alloy. Compd. 765, 659–663 (2018)

    Article  Google Scholar 

  3. Xue, Z.Q., Guo, Y.Q.: Correlation between valence electronic structure and magnetic properties in RCo5 (R = rare earth) intermetallic compound. Chin. Phys. B. 25, 063101 (2016)

  4. Zhang, D.T., Cai, N.X., Zhu, R.C., Liu, W.Q., Yue, M.: Low-cost Sm0.7Y0.3Co5 sintered magnet produced by traditional powder metallurgical techniques. Rare Met. 39, 421–428 (2020)

  5. Ma, Z.H., Zhang, T.L., Wang, H., Jiang, C.B.: Synthesis of SmCo5 nanoparticles with small size and high performance by hydrogenation technique. Rare Met. 37, 21–26 (2018)

    Article  Google Scholar 

  6. Bartlett, R.W., Jorgensen, P.J.: Microstructural changes in SmCo5 caused by oxygen, sinter-annealing and thermal aging. J. Less-Common Met. 37, 21–34 (1974)

    Article  Google Scholar 

  7. Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P.: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011)

  8. Ding, J., McCormick, P.G., Street, R.: Structure and magnetic properties of mechanically alloyed SmxCo1-x. J. Alloy. Compd. 191, 197–201 (1993)

    Article  Google Scholar 

  9. Gabay, A.M., Hu, X.C., Hadjipanayis, G.C.: Preparation of YCo5, PrCo5 and SmCo5 anisotropic high-coercivity powders via mechanochemistry. J. Magn. Magn. Mater. 368, 75–81 (2014)

    Article  ADS  Google Scholar 

  10. Inomata, K., Shikanai, S., Horie, H., Fukui, K.: On strain and coercive force of RCo5. Jpn. J. Appl. Phys. 12, 565 (1973)

    Article  ADS  Google Scholar 

  11. Kumar, K., Das, D., Wettstein, E.: High coercivity, isotropic plasma sprayed samarium-cobalt magnets. J. Appl. Phys. 49, 2052–2054 (1978)

    Article  ADS  Google Scholar 

  12. Kubis, M., Handstein, A., Gebel, B., Gutfleisch, O., Müller, K.H., Schultz, L.: Highly coercive SmCo5 magnets prepared by a modified hydrogenation-disproportionation-desorption-recombination process. J. Appl. Phys. 85, 5666–5668 (1999)

    Article  ADS  Google Scholar 

  13. Suresh, K., Gopalan, R., Bhikshamaiah, G., Singh, A.K., Rao, D.V.S., Muraleedharan, K., Chandrasekaran, V.: Phase formation, microstructure and magnetic properties investigation in Cu and Fe substituted SmCo5 melt-spun ribbons. J. Alloy. Compd. 463, 73–77 (2008)

    Article  Google Scholar 

  14. Song, J., Jiang, Q.Z., Rehman, S.U., He, L.K., Li, X., Chen, Y.W., Zhao, C.J., Zhong, Z.C.: Magnetic properties and microstructure of Sm-Co-Fe-Cu-Zr-Hf spark plasma sintered magnets. Phys. B. 605, 412711 (2020)

  15. Kündig, A.A., Gopalan, R., Ohkubo, T., Hono, K.: Coercivity enhancement in melt-spun SmCo5 by Sn addition. Scr. Mater. 54, 2047–2051 (2006)

    Article  Google Scholar 

  16. Jiang, Q.Z., Song, J., Huang, Q.F., Rehman, S.U., He, L.K., Zeng, Q.W., Zhong, Z.C.: Enhanced magnetic properties and improved corrosion performance of nanocrystalline Pr-Nd-Y-Fe-B spark plasma sintered magnets. J. Mate Sci Technol. 58, 138–144 (2020)

    Article  Google Scholar 

  17. Kohlmann, H., Hansen, T.C., Nassif, V.: Magnetic structure of SmCo5 from 5 K to the Curie temperature. Inorg Chem. 57, 1702–1704 (2018)

    Article  Google Scholar 

  18. Pentón, A., Estévez, E., Lora, R., Espina-Hernández, J.H., Grossinger, R., Turtelli, R.S., Valor-Reed, A.: On the nature of the disordered microstructure in Sm(Co, Cu)5 alloys with increasing Cu content. J. Alloys Compd. 429, 343–347 (2007)

    Article  Google Scholar 

  19. Xu, X.C., Li, Y.Q., Ma, Z.H., Yue, M., Zhang, D.T.: Sm2Co7 nanophase inducing low-temperature hot deformation to fabricate high performance SmCo5 magnet. J. Scr. Mater. 178, 34–38 (2020)

    Article  Google Scholar 

  20. Zhang, D.T., Zhu, R.C., Yue, M., Liu, W.Q.: Microstructure and magnetic properties of SmCo5 sintered magnets. Rare Met. 39, 1295–1299 (2019)

    Article  Google Scholar 

  21. Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater Sci. 41, 763–777 (2006)

    Article  ADS  Google Scholar 

  22. Jiang, Q.Z., He, L.K., Lei, W.K., Zeng, Q.W., Rehman, S.U., Zhang, L.L., Liu, R.H., Li, J.J., Ma, S.C., Zhong, Z.C.: Microstructure and magnetic properties of multi-main-phase Ce-Fe-B spark plasma sintered magnets by dual alloy method. J. Magn. Magn. Mater. 475, 746–753 (2019)

    Article  ADS  Google Scholar 

  23. Liu, S., Kang, N.H., Feng, L., Lee, S.H., Yu, J.H., Lee, J.G.: Anisotropic nanocrystalline Nd-Fe-B based magnets produced by spark plasma sintered technique. IEEE Trans. Magn. 51, 1–4 (2015)

  24. Rao, N.V.R., Gopalan, R., Raja, M.M., Chandrasekaran, V., Chakravarty, D., Sundaresan, R., Ranganathan, R., Honoa, K.: Structural and magnetic studies on spark plasma sintered SmCo5/Fe bulk nanocomposite magnets. J. Magn. Magn. Mater. 312, 252–257 (2007)

    Article  ADS  Google Scholar 

  25. Xu, X.C.,  Zhang, H.G., Wang, T., Li, Y.Q., Zhang, D.T., Yue, M.: Local orientation texture analysis in nanocrystalline Sm0.6Pr0.4Co5 magnet and (SmCo5)0.6(PrCo5)0.4 composite magnet with strong magnetic anisotropy. J. Alloys Compd. 699, 262−267 (2017)

  26. Eldosouky, A., Ikram, A., Mehmood, M.F., Xu, X., Šturm, S., Rožman, K.Ž, Škulj, I.: Using of SPS technique for the production of high coercivity recycled SmCo5 magnets prepared by HD process. IEEE Trans. Magn. 7, 1–4 (2016)

    Google Scholar 

  27. Liang, J.M., Yue, M., Zhang, D.T., Li, Y.Q., Xu, X.C., Li, H.J., Xi, W.: Anisotropic SmCo5 nanocrystalline magnet prepared by hot deformation with bulk amorphous precursors. IEEE Trans. Magn. 54, 1–1 (2018)

    Google Scholar 

  28. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  29. Broeder, F.J.A.D., Zijlstra, H.: Relation between coercive force and microstructure of sintered SmCo5 permanent magnets. J. Appl. Phys. 47, 2688–2695 (1976)

    Article  ADS  Google Scholar 

  30. Andreev, A.V., Zadvorkin, S.M.: Thermal expansion and spontaneous magnetorestriction of RCo5 intermetallic compounds. Phys. B. 172, 517–525 (1991)

    Article  ADS  Google Scholar 

  31. Sobolev, A.N., Golovnia, O.A., Popov, A.G.: Embedded atom potential for Sm–Co compounds obtained by forcematchin, J. Magn. Magn. Mater. 490, 165468 (2019)

  32. Yi, L., Sellmyer, D.J., Shindo, D.: Handbook of Advanced Magnetic Materials. Springer, US (2006)

    Google Scholar 

  33. Li, H.J., Wu, Q., Yue, M., Li, Y.Q., Zhuge, Y.T., Wang, D.J., Zhang, J.X.: Anisotropic nanostructured SmCo5 bonded magnets fabricated by magneticfield-assisted liquid phase processing. J. Magn. Magn. Mater. 483, 124–128 (2019)

    Article  ADS  Google Scholar 

  34. Zhong, S.W., Yang, M.N., Rehman, S.U., Lu, Y.J., Li, J.J., Yang, B.: Microstructure, magnetic properties and diffusion mechanism of DyMg co-deposited sintered Nd-Fe-B magnets. J. Alloys Compd. 819, 153002 (2020)

  35. Ma, Q., Yue, M., Xu, X.C., Zhang, H.G., Zhang, D.T., Zhang, X.F., Zhang, J.X.: Effect of phase composition on crystal texture formation in hot deformed nanocrystalline SmCo5 magnets. AIP Adv. 8, 056214 (2018) 

  36. Chen, W., Anselmi-Tamburini, U., Garay, J.E., Groza, J.R., Munir, Z.A.: Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Mater. Sci. Eng. A. 394, 132–138 (2005)

  37. Anselmi-Tamburini, U., Gennari, S., Garay, J.E., Munir, Z.A.: Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater. Sci. Eng. A. 394, 139–148 (2005)

Download references

Funding

This work was supported by the Key Research and Development Program of Jiangxi Province (Grant No. 20201BBE51010), China Postdoctoral Science foundation (Grant No. 2020M682064), Postdoctoral Science foundation of Jiangxi Province (Grant No. 2020KY19), the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology (No. JXUSTQJYX2020003), the Ph.D. Start-up Foundation of Jiangxi University of Science and Technology (Grant No. JXXJBS18052) and the project funded by the science and technology bureau of Ganzhou city (No. 204301000105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingzheng Jiang or Zhenchen Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jiang, Q., Li, X. et al. Influence of Sintering Temperatures on the Phase Structure and Magnetic Properties of Spark Plasma Sintered SmCo5 Magnets. J Supercond Nov Magn 34, 3395–3401 (2021). https://doi.org/10.1007/s10948-021-06043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06043-1

Keywords

Navigation