Skip to main content

Advertisement

Log in

A First-Principles Investigation on Electronic Structure, Optical and Thermoelectric Properties of Janus In2SeTe Monolayer

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Janus two-dimensional (2D) materials have recently demonstrated excellent physical and chemical properties. The electronic, thermoelectric, and optical properties of the Janus In2SeTe monolayer have been investigated using density functional theory (DFT) calculations. Our results revealed the Janus In2SeTe monolayer has a direct bandgap of 1.07 eV, which is desirable and smaller than that of InSe and InTe. The studied optical properties indicate that Janus In2SeTe monolayer has a very good absorbing capability of light from the infrared region to ultraviolet one with a large absorption coefficient. Moreover, the thermoelectric property calculations suggest that the In2SeTe Janus monolayer can be a potential thermoelectric material, with a great electronic figure of merit (\({ZT}_{\mathrm{e}}\)) of 0.97 at 300 K. In addition, the \({ZT}_{\mathrm{e}}\) increases with temperature up to a value of 1.42 at 800 K. Our results revealed the Janus In2SeTe monolayer possesses good properties that could offer the possibility of optoelectronic and energy conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  2. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

  3. Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010). https://doi.org/10.1063/1.3524215

    Article  ADS  Google Scholar 

  4. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). https://doi.org/10.1021/nn501226z

    Article  Google Scholar 

  5. Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A., Lay, G.L.: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014). https://doi.org/10.1088/1367-2630/16/9/095002

    Article  ADS  Google Scholar 

  6. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  ADS  Google Scholar 

  7. Gouskov, A., Camassel, J., Gouskov, L.: Growth and characterization of III–VI layered crystals like GaSe, GaTe, InSe, GaSe1-xTex and GaxIn1-xSe. Prog. Cryst. Growth Charact. 5, 323–413 (1982). https://doi.org/10.1016/0146-3535(82)90004-1

    Article  Google Scholar 

  8. Camara, M.O.D., Mauger, A., Devos, I.: Electronic structure of the layer compounds GaSe and InSe in a tight-binding approach. Phys. Rev. B. 65, 125206 (2002). https://doi.org/10.1103/PhysRevB.65.125206

    Article  ADS  Google Scholar 

  9. Wan, J.Z., Brebner, J.L., Leonelli, R., Graham, J.T.: Optical properties of excitons in GaTe. Phys. Rev. B. 46, 1468–1471 (1992). https://doi.org/10.1103/PhysRevB.46.1468

    Article  ADS  Google Scholar 

  10. Schwarz, S., Dufferwiel, S., Walker, P.M., Withers, F., Trichet, A.A.P., Sich, M., Li, F., Chekhovich, E.A., Borisenko, D.N., Kolesnikov, N.N., Novoselov, K.S., Skolnick, M.S., Smith, J.M., Krizhanovskii, D.N., Tartakovskii, A.I.: Two-dimensional metal–chalcogenide films in tunable optical microcavities. Nano Lett. 14, 7003–7008 (2014). https://doi.org/10.1021/nl503312x

    Article  ADS  Google Scholar 

  11. Hu, Y., Zhang, S., Sun, S., Xie, M., Cai, B., Zeng, H.: GeSe monolayer semiconductor with tunable direct band gap and small carrier effective mass. Appl. Phys. Lett. 107, 122107 (2015). https://doi.org/10.1063/1.4931459

    Article  ADS  Google Scholar 

  12. Gomes, L.C., Carvalho, A.: Phosphorene analogues: isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B. 92, 085406 (2015). https://doi.org/10.1103/PhysRevB.92.085406

    Article  ADS  Google Scholar 

  13. Han, G., Chen, Z.-G., Drennan, J., Zou, J.: Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 10, 2747–2765 (2014). https://doi.org/10.1002/smll.201400104

    Article  Google Scholar 

  14. Li, M.-S., Chen, K.-X., Mo, D.-C., Lyu, S.-S.: Predicted high thermoelectric performance in a two-dimensional indium telluride monolayer and its dependence on strain. Phys. Chem. Chem. Phys. 21, 24695–24701 (2019). https://doi.org/10.1039/C9CP04666F

    Article  Google Scholar 

  15. Hung, N.T., Nugraha, A.R.T., Saito, R.: Two-dimensional InSe as a potential thermoelectric material. Appl. Phys. Lett. 111, 092107 (2017). https://doi.org/10.1063/1.5001184

    Article  ADS  Google Scholar 

  16. Wang, Q., Han, L., Wu, L., Zhang, T., Li, S., Lu, P.: Strain effect on thermoelectric performance of InSe monolayer. Nanoscale Res. Lett. 14, 287 (2019). https://doi.org/10.1186/s11671-019-3113-9

    Article  ADS  Google Scholar 

  17. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.-P., Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007). https://doi.org/10.1002/adma.200600527

    Article  Google Scholar 

  18. Hung, N.T., Hasdeo, E.H., Nugraha, A.R.T., Dresselhaus, M.S., Saito, R.: Quantum effects in the thermoelectric power factor of low-dimensional semiconductors. Phys. Rev. Lett. 117, 036602 (2016). https://doi.org/10.1103/PhysRevLett.117.036602

    Article  ADS  Google Scholar 

  19. Saito, Y., Iizuka, T., Koretsune, T., Arita, R., Shimizu, S., Iwasa, Y.: Gate-tuned thermoelectric power in black phosphorus. Nano Lett. 16, 4819–4824 (2016). https://doi.org/10.1021/acs.nanolett.6b00999

    Article  ADS  Google Scholar 

  20. Fei, R., Faghaninia, A., Soklaski, R., Yan, J.-A., Lo, C., Yang, L.: Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014). https://doi.org/10.1021/nl502865s

    Article  ADS  Google Scholar 

  21. Liao, B., Zhou, J., Qiu, B., Dresselhaus, M.S., Chen, G.: Ab initio study of electron-phonon interaction in phosphorene. Phys. Rev. B. 91, 235419 (2015). https://doi.org/10.1103/PhysRevB.91.235419

    Article  ADS  Google Scholar 

  22. Yoshida, M., Iizuka, T., Saito, Y., Onga, M., Suzuki, R., Zhang, Y., Iwasa, Y., Shimizu, S.: Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals. Nano Lett. 16, 2061–2065 (2016). https://doi.org/10.1021/acs.nanolett.6b00075

    Article  ADS  Google Scholar 

  23. Kayyalha, M., Maassen, J., Lundstrom, M., Shi, L., Chen, Y.P.: Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2. J. Appl. Phys. 120, 134305 (2016). https://doi.org/10.1063/1.4963364

    Article  ADS  Google Scholar 

  24. Ye, Z., Cao, T., O’Brien, K., Zhu, H., Yin, X., Wang, Y., Louie, S.G., Zhang, X.: Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014). https://doi.org/10.1038/nature13734

    Article  ADS  Google Scholar 

  25. Mak, K.F., Shan, J.: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics. 10, 216–226 (2016). https://doi.org/10.1038/nphoton.2015.282

    Article  ADS  Google Scholar 

  26. Cheng, Y.C., Zhu, Z.Y., Tahir, M., Schwingenschlögl, U.: Spin-orbit–induced spin splittings in polar transition metal dichalcogenide monolayers. EPL Europhys. Lett. 102, 57001 (2013). https://doi.org/10.1209/0295-5075/102/57001

    Article  ADS  Google Scholar 

  27. Lu, A.-Y., Zhu, H., Xiao, J., Chuu, C.-P., Han, Y., Chiu, M.-H., Cheng, C.-C., Yang, C.-W., Wei, K.-H., Yang, Y., Wang, Y., Sokaras, D., Nordlund, D., Yang, P., Muller, D.A., Chou, M.-Y., Zhang, X., Li, L.-J.: Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017). https://doi.org/10.1038/nnano.2017.100

    Article  Google Scholar 

  28. Zhang, J., Jia, S., Kholmanov, I., Dong, L., Er, D., Chen, W., Guo, H., Jin, Z., Shenoy, V.B., Shi, L., Lou, J.: Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017). https://doi.org/10.1021/acsnano.7b03186

    Article  Google Scholar 

  29. Nguyen, H.T.T., Vi, V.T.T., Vu, T.V., Phuc, H.V., Nguyen, C.V., Tong, H.D., Hoa, L.T., Hieu, N.N.: Janus Ga2STe monolayer under strain and electric field: theoretical prediction of electronic and optical properties. Phys. E Low-Dimens. Syst. Nanostructures. 124, 114358 (2020). https://doi.org/10.1016/j.physe.2020.114358

    Article  Google Scholar 

  30. Yang, X., Singh, D., Xu, Z., Wang, Z., Ahuja, R.: An emerging Janus MoSeTe material for potential applications in optoelectronic devices. J. Mater. Chem. C. 7, 12312–12320 (2019). https://doi.org/10.1039/C9TC03936H

    Article  Google Scholar 

  31. Idrees, M., Din, H.U., Ali, R., Rehman, G., Hussain, T., Nguyen, C.V., Ahmad, I., Amin, B.: Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Phys. Chem. Chem. Phys. 21, 18612–18621 (2019). https://doi.org/10.1039/C9CP02648G

    Article  Google Scholar 

  32. Chen, J.: Phonon-mediated superconductivity in electron-doped monolayer InSe: a first-principles investigation. J. Phys. Chem. Solids. 125, 23–30 (2019). https://doi.org/10.1016/j.jpcs.2018.09.039

    Article  ADS  Google Scholar 

  33. Guan, S.-S., Ke, S.-S., Yu, F.-F., Deng, H.-X., Guo, Y., Lü, H.-F.: Controlling magnetism of monolayer Janus MoSSe by embedding transition-metal atoms. Appl. Surf. Sci. 496, 143692 (2019). https://doi.org/10.1016/j.apsusc.2019.143692

    Article  Google Scholar 

  34. Yang, X., Singh, D., Xu, Z., Ahuja, R.: Sensing the polar molecules MH 3 (M = N, P, or As) with a Janus NbTeSe monolayer. New J. Chem. 44, 7932–7940 (2020). https://doi.org/10.1039/D0NJ01022G

    Article  Google Scholar 

  35. Luo, Y., Wang, S., Shu, H., Chou, J.-P., Ren, K., Yu, J., Sun, M.: A MoSSe/blue phosphorene vdw heterostructure with energy conversion efficiency of 19.9% for photocatalytic water splitting. Semicond. Sci. Technol. 35, 125008 (2020). https://doi.org/10.1088/1361-6641/abba40

  36. Ren, K., Wang, S., Luo, Y., Chou, J.-P., Yu, J., Tang, W., Sun, M.: High-efficiency photocatalyst for water splitting: a Janus MoSSe/XN (X\hspace0.167em\hspace0.167em=\hspace0.167em\hspace0.167emGa, Al) van der Waals heterostructure. J. Phys. Appl. Phys. 53, 185504 (2020). https://doi.org/10.1088/1361-6463/ab71ad

  37. Kahraman, Z., Baskurt, M., Yagmurcukardes, M., Chaves, A., Sahin, H.: Stable Janus TaSe2 single-layers via surface functionalization. Appl. Surf. Sci. 538, 148064 (2021). https://doi.org/10.1016/j.apsusc.2020.148064

    Article  Google Scholar 

  38. Guo, S.-D., Li, Y.-F., Guo, X.-S.: Predicted Janus monolayer ZrSSe with enhanced n-type thermoelectric properties compared with monolayer ZrS2. Comput. Mater. Sci. 161, 16–23 (2019). https://doi.org/10.1016/j.commatsci.2019.01.035

    Article  Google Scholar 

  39. Patel, A., Singh, D., Sonvane, Y., Thakor, P.B., Ahuja, R.: High thermoelectric performance in two-dimensional Janus monolayer material WS-X (X = Se and Te). ACS Appl. Mater. Interfaces. 12, 46212–46219 (2020). https://doi.org/10.1021/acsami.0c13960

    Article  Google Scholar 

  40. Vu, T.V., Tong, H.D., Tran, D.P., Binh, N.T., Nguyen, C.V., Phuc, H.V., Do, H.M. and Hieu, N.N.: Electronic and optical properties of Janus ZrSSe by density functional theory. RSC Adv. 9, 41058–41065 (2019). https://doi.org/10.1039/C9RA08605F

  41. Sun, M., Ren, Q., Wang, S., Yu, J., Tang, W.: Electronic properties of Janus silicene: new direct band gap semiconductors. J. Phys. Appl. Phys. 49, 445305 (2016). https://doi.org/10.1088/0022-3727/49/44/445305

    Article  ADS  Google Scholar 

  42. Guo, Y., Zhou, S., Bai, Y., Zhao, J.: Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett. 110, 163102 (2017). https://doi.org/10.1063/1.4981877

    Article  ADS  Google Scholar 

  43. Guo, S.-D., Dong, J.: Biaxial strain tuned electronic structures and power factor in Janus transition metal dichalchogenide monolayers. Semicond. Sci. Technol. 33, 085003 (2018). https://doi.org/10.1088/1361-6641/aacb11

    Article  ADS  Google Scholar 

  44. Wang, J., Shu, H., Zhao, T., Liang, P., Wang, N., Cao, D., Chen, X.: Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides. Phys. Chem. Chem. Phys. 20, 18571–18578 (2018). https://doi.org/10.1039/C8CP02612B

    Article  Google Scholar 

  45. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  46. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  47. Marini, A., Hogan, C., Grüning, M., Varsano, D.: yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009). https://doi.org/10.1016/j.cpc.2009.02.003

    Article  ADS  Google Scholar 

  48. Li, W., Carrete, J., A. Katcho, N., Mingo, N.: ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014). https://doi.org/10.1016/j.cpc.2014.02.015

  49. Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

  50. Momma, K., Izumi, F.: VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008). https://doi.org/10.1107/S0021889808012016

    Article  Google Scholar 

  51. Shang, J., Pan, L., Wang, X., Li, J., Deng, H.-X., Wei, Z.: Tunable electronic and optical properties of InSe/InTe van der Waals heterostructures toward optoelectronic applications. J. Mater. Chem. C. 6, 7201–7206 (2018). https://doi.org/10.1039/C8TC01533C

    Article  Google Scholar 

  52. Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B. 73, 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112

    Article  ADS  Google Scholar 

  53. Kuzmenko, A.B.: Kramers-Kronig constrained variational analysis of optical spectra. Rev. Sci. Instrum. 76, 083108 (2005). https://doi.org/10.1063/1.1979470

    Article  ADS  Google Scholar 

  54. John, R., Merlin, B.: Optical properties of graphene, silicene, germanene, and stanene from IR to far UV – a first principles study. J. Phys. Chem. Solids. 110, 307–315 (2017). https://doi.org/10.1016/j.jpcs.2017.06.026

    Article  ADS  Google Scholar 

  55. Bui, H.D., Jappor, H.R., Hieu, N.N.: Tunable optical and electronic properties of Janus monolayers Ga2SSe, Ga2STe, and Ga2SeTe as promising candidates for ultraviolet photodetectors applications. Superlattices Microstruct. 125, 1–7 (2019). https://doi.org/10.1016/j.spmi.2018.10.020

    Article  ADS  Google Scholar 

  56. T. Nguyen, H.T., T. Vi, V.T., V. Vu, T., V. Hieu, N., V. Lu, D., P. Rai, D., T. Binh, N.T.: Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga 2 SSe. RSC Adv. 10, 44785–44792 (2020). https://doi.org/10.1039/D0RA08279A

  57. Mishra, P., Singh, D., Sonvane, Y., Ahuja, R.: Two-dimensional boron monochalcogenide monolayer for thermoelectric material. Sustain. Energy Fuels. 4, 2363–2369 (2020). https://doi.org/10.1039/D0SE00004C

    Article  Google Scholar 

  58. Moujaes, E.A., Diery, W.A.: Thermoelectric properties of 1 T monolayer pristine and Janus Pd dichalcogenides. J. Phys. Condens. Matter. 31, 455502 (2019). https://doi.org/10.1088/1361-648X/ab347a

    Article  ADS  Google Scholar 

  59. Yang, K., Cahangirov, S., Cantarero, A., Rubio, A., D’Agosta, R.: Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B. 89, 125403 (2014). https://doi.org/10.1103/PhysRevB.89.125403

    Article  ADS  Google Scholar 

  60. Huang, W., Da, H., Liang, G.: Thermoelectric performance of MX2 (M = Mo, W; X = S, Se) monolayers. J. Appl. Phys. 113, 104304 (2013). https://doi.org/10.1063/1.4794363

    Article  ADS  Google Scholar 

  61. Maassen, J., Lundstrom, M.: A computational study of the thermoelectric performance of ultrathin Bi2Te3 films. Appl. Phys. Lett. 102, 093103 (2013). https://doi.org/10.1063/1.4794534

    Article  ADS  Google Scholar 

  62. Shafique, A., Shin, Y.-H.: Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds. Sci. Rep. 7, 506 (2017). https://doi.org/10.1038/s41598-017-00598-7

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of PPR2-OGI Env (reference PPR2/2016/79) team—Faculty of Sciences and Techniques—Tangier—Morocco—for providing a cloud computing research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Marjaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marjaoui, A., Zanouni, M., Ait Tamerd, M. et al. A First-Principles Investigation on Electronic Structure, Optical and Thermoelectric Properties of Janus In2SeTe Monolayer. J Supercond Nov Magn 34, 3279–3290 (2021). https://doi.org/10.1007/s10948-021-06028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06028-0

Keywords

Navigation