Skip to main content
Log in

Investigation of Cation and Cation Vacancy Distributions in the Zinc Substituted Maghemite, Prepared by One Pot Room Temperature Co-precipitation Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The cation and cation vacancy distributions in Zn2+ substituted maghemite (γ-Fe2 (1-x/3) ZnxO3, x = 0.0, 0.1, 0.2, 0.3 and 0.4) nanoparticles, which were synthesized directly via one pot room temperature co-precipitation method, were obtained by positron annihilation lifetime spectroscopy, coincidence Doppler broadening spectroscopy, and Rietveld refinement of XRD patterns. The analyses show that the substitution of small amounts of zinc ions for iron ones in maghemite (x ≤ 0.1) leads to an increase in the number of cation vacancies, while more substitutions cause to a decrease in cation vacancies. For the samples with x = 0.0 and 0.1, more of vacancies are placed at B sites, whereas for others they are placed at the A ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hadadian, Y., Ramos, A.P., Pavan, T.Z.: Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: interplay between intrinsic properties and dipolar interactions. Sci. Rep. 9, 1–14 (2019)

    Article  Google Scholar 

  2. Behdadfar, B., Kermanpur, A., Sadeghi-Aliabadi, H., del Puerto Morales, M., Mozaffari, M.: Synthesis of aqueous ferrofluids of ZnxFe3−xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications. J. Magn. Magn. Mater. 324, 2211–2217 (2012)

    Article  ADS  Google Scholar 

  3. Mozaffari, M., Hadadian, Y., Aftabi, A., Moakhar, M.O.: The effect of cobalt substitution on magnetic hardening of magnetite. J. Magn. Magn. Mater. 354, 119–124 (2014)

    Article  ADS  Google Scholar 

  4. Cornell, R.M., Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons. (2003)

  5. Faivre, D.: Iron oxides: from nature to applications. John Wiley & Sons. (2016)

  6. Tartaj, P., Morales, M.P., Gonzalez-Carreño, T., Veintemillas-Verdaguer, S., Serna, C.J.: The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv. Mater. 23, 5243–5249 (2011)

    Article  Google Scholar 

  7. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  Google Scholar 

  8. Henry, W.E., Boehm, M.J.: Intradomain magnetic saturation and magnetic structure of γ-Fe2O3. Phys. Rev. 101, 1253 (1956)

    Article  ADS  Google Scholar 

  9. Ferguson, G., Jr., Hass, M.: Magnetic structure and vacancy distribution in γ-Fe2O3 by neutron diffraction. Phys. Rev. 112, 1130 (1958)

    Article  ADS  Google Scholar 

  10. Armstrong, R., Morrish, A., Sawatzky, G.: Mössbauer study of ferric ions in the tetrahedral and octahedral sites of a spinel. Phys. Lett. 23, 414–416 (1966)

    Article  ADS  Google Scholar 

  11. Kargar, Z., Asgarian, S.M., Mozaffari, M.: Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles. Nucl. Instr. and Meth. B 375, 71–78 (2016)

    Article  ADS  Google Scholar 

  12. Schmidbauer, E., Keller, M.: Magnetic hysteresis properties, Mössbauer spectra and structural data of spherical 250 nm particles of solid solutions Fe3O4–γ-Fe2O3. J. Magn. Magn Mater. 297, 107–117 (2006)

    Article  ADS  Google Scholar 

  13. Szpala, S., Asoka-Kumar, P., Nielsen, B., Peng, J., Hayakawa, S., Lynn, K., Gossmann, H.J.: Defect identification using the core-electron contribution in Doppler-broadening spectroscopy of positron-annihilation radiation. Phys. Rev. B 54, 4722 (1996)

    Article  ADS  Google Scholar 

  14. Huang, G., Yang, Y., Sun, H., Xu, S., Wang, J., Ahmad, M., Xu, Z.: Defective ZnCo2O4 with Zn vacancies: synthesis, property and electrochemical application. J. Alloys Comp. 724, 1149–1156 (2017)

    Article  Google Scholar 

  15. Gao, P., Chen, Z., Gong, Y., Zhang, R., Liu, H., Tang, P., Chen, X., Passerini, S., Liu, J.: The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv. Energy Mater. 10, 1903780 (2020)

    Article  Google Scholar 

  16. Asgarian, S.M., Kargar, Z., Mozaffari, M.: Investigation of cation vacancies in zinc substituted maghemite by positron annihilation lifetime and Doppler broadening spectroscopy. Appl. Radiat. Isot. 125, 18–22 (2017)

    Article  Google Scholar 

  17. Grau-Crespo, R., Al-Baitai, A.Y., Saadoune, I., De Leeuw, N.H.: Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation. J. Phys. Condens. Matter. 22, 255401 (2010)

  18. Bhadala, F., Suthar, L., Roy, M.: Sequel of divalent zinc substitution on structural, electrical and thermal properties of bismuth ferrite ceramics. Appl. Phys. A 127, 1–17 (2021)

    Article  Google Scholar 

  19. Murugesan, C., Ugendar, K., Okrasa, L., Shen, J., Chandrasekaran, G.: Zinc substitution effect on the structural, spectroscopic and electrical properties of nanocrystalline MnFe2O4 spinel ferrite. Ceram. Int. 47, 1672–1685 (2021)

    Article  Google Scholar 

  20. Hadadian, Y., Sampaio, D.R., Ramos, A.P., Carneiro, A.A., Mozaffari, M., Cabrelli, L.C., Pavan, T.Z.: Synthesis and characterization of zinc substituted magnetite nanoparticles and their application to magneto-motive ultrasound imaging. J. Magn. Magn. Mater. 465, 33–43 (2018)

    Article  ADS  Google Scholar 

  21. Gore, S.K., Tumberphale, U., Jadhav, S.S., Kawale, R., Naushad, M., Mane, R.S.: Microwave-assisted synthesis and magneto-electrical properties of Mg-Zn ferrimagnetic oxide nanostructures. Phys. B 530, 177–182 (2018)

    Article  ADS  Google Scholar 

  22. Gillot, B., Benloucif, R.: X-ray diffraction, IR spectrometry and high resolution electron microscopy on ordered zinc-substituted maghemites. Mater. Chem. Phys. 32, 37–41 (1992)

    Article  Google Scholar 

  23. Drofenik, M., Kristl, M., Makovec, D., Jagličić, Z., Hanžel, D.: Sonochemically assisted synthesis of zinc-doped maghemite. Ultrason. Sonochem. 15, 791–798 (2008)

    Article  Google Scholar 

  24. Amighian, J., Mozaffari, M., Nasr, B.: Preparation of nano‐sized manganese ferrite (MnFe2O4) via coprecipitation method. Phys. Status Solidi C. 3, 3188–3192 (2006)

  25. Pourbafarani, S., Mozaffari, M., Amighian, J.: Investigation of phase formation and magnetic properties of Mn ferrite nanoparticles prepared via low-power ultrasonic assisted co-precipitation method. J. Supercond. Novel Magn. 26, 675–678 (2013)

    Article  Google Scholar 

  26. Wagner, U.: Aspects of the correlation between raw material and ferrite properties, II. J. Magn. Magn. Mater. 23, 73–78 (1981)

    Article  ADS  Google Scholar 

  27. Spiers, K.M., Cashion, J.D.: Crystallographically-based analysis of the NMR spectra of maghemite. J. Magn. Magn. Mater. 324, 862–868 (2012)

    Article  ADS  Google Scholar 

  28. Čížek, J.: Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: a review. J. Mater. Sci. Technol. 34, 577–598 (2018)

    Article  Google Scholar 

  29. Krause-Rehberg, R., Leipner, H.S.: Positron annihilation in semiconductors: defect studies. springer-verlag, Berlin Heidelberg. (1999)

  30. Jean, A.Y.C.: Positron annihilation spectroscopy for chemical analysis: a novel probe for microstructural analysis of polymers. Microchem. J. 42, 72–102 (1990)

  31. Tuomisto, F., Makkonen, I.: Defect identification in semiconductors: Experiment and theory of positron annihilation. Rev. Mod. Phys 85, 1583 (2013)

    Article  ADS  Google Scholar 

  32. Shatooti, S., Mozaffari, M.: The effect of Zn2+ substitution on magnetic properties of maghemite nanoparticles, prepared by one-pot coprecipitation method at room temperature. J. Mater. Sci. - Mater. Electron. 31, 1891–1903 (2020)

    Article  Google Scholar 

  33. Chakrabarti, S., Chaudhuri, S., Nambissan, P.M.G.: Positron annihilation lifetime changes across the structural phase transition in nanocrystalline Fe2O3. Phys. Rev. B 71, 064105 (2005)

  34. Selim, F., Varney, C., Tarun, M., Rowe, M., Collins, G., McCluskey, M.: Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets. Phys. Rev. B 88, 174102 (2013)

  35. Keeble, D.J., Brossmann, U., Puff, W., Würschum, R.: in Characterization of materials, edited by Kaufmann, E.N. John Wiley & Sons, Inc., Vol. 3, pp. 1899. (2012)

  36. Keeble, D., Singh, S., Mackie, R., Morozov, M., McGuire, S., Damjanovic, D.: Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3: A positron annihilation lifetime spectroscopy study. Phys. Rev. B 76, 144109 (2007)

  37. Gómez, C.A.P., McCoy, J.J., Weber, M.H., Lynn, K.G.: Effect of Zn for Ni substitution on the properties of Nickel-Zinc ferrites as studied by low-energy implanted positrons. J. Magn. Magn. Mater. 481, 93–99 (2019)

    Article  ADS  Google Scholar 

  38. Selim, F., Solodovnikov, D., Weber, M., Lynn, K.: Identification of defects in Y3Al5O12 crystals by positron annihilation spectroscopy. Appl. Phys. Lett. 91, 4105 (2007)

    Article  Google Scholar 

  39. Wei, Z., Xia, T., Ma, J., Feng, W., Dai, J., Wang, Q., Yan, P.: Investigation of the lattice expansion for Ni nanoparticles. Mater. Charact. 58, 1019–1024 (2007)

    Article  Google Scholar 

  40. Tsunekawa, S., Ishikawa, K., Li, Z.Q., Kawazoe, Y., Kasuya, A.: Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 85, 3440 (2000)

    Article  ADS  Google Scholar 

  41. Ghosh, S., Nambissan, P.M.G., Bhattacharya, R.: Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4. Phys. Lett. A 325, 301–308 (2004)

  42. Robles, J.C., Ogando, E., Plazaola, F.: Positron lifetime calculation for the elements of the periodic table. J. Phys.: Condens. Matter. 19, 176222 (2007)

  43. Asgarian, S.M., Pourmasoud, S., Kargar, Z., Sobhani-Nasab, A., Eghbali-Arani, M.: Investigation of positron annihilation lifetime and magnetic properties of Co1−xCuxFe2O4 nanoparticles. Mater. Res. Express. 6, 015023 (2018)

  44. Nambissan, P.M.G., Upadhyay, C., Verma, H.C.: Positron lifetime spectroscopic studies of nanocrystalline ZnFe2O4. J. Appl. Phys. 93, 6320–6326 (2003)

    Article  ADS  Google Scholar 

  45. Puska, M., Nieminen, R.: Defect spectroscopy with positrons: a general calculational method. J. Phys. F: Met. Phys. 13, 333 (1983)

    Article  ADS  Google Scholar 

  46. Dupré, G., Rousset, A., Mollard, P.: Etude des solutions solides entre le sesquioxyde de fer cubique γ-Fe2O3 et le ferrite de zinc ZnFe2O4. Mater. Res. Bull. 11, 473–476 (1976)

    Article  Google Scholar 

  47. Mozaffari, M., Shatooti, S., Jafarzadeh, M., Niyaifar, M., Aftabi, A., Mohammadpour, H., Amiri, S.: Synthesis of Zn2+ substituted maghemite nanoparticles and investigation of their structural and magnetic properties. J. Magn. Magn. Mater. 382, 366–375 (2015)

    Article  ADS  Google Scholar 

  48. O’Neill, H.S.C., Navrotsky, A.: Simple spinels; crystallographic parameters, cation radii, lattice energies, and cation distribution. Am. Miner. 68, 181–194 (1983)

    Google Scholar 

  49. Barad, D.V., Mange, P.L., Jani, K.K., Mukherjee, S., Ahmed, M., Kumar, S., Dolia, S.N., Pandit, R., Raval, P.Y., Modi, K.B.: Ca2+-substitution effect on the defect structural changes in the quadruple perovskite series Ca1+xCu3-xTi4O12 studied by positron annihilation and complementary methods. Ceram. Int. 47, 2631–2640 (2021)

    Article  Google Scholar 

  50. Mukherjee, A., Banerjee, M., Basu, S., Nambissan, P.M.G., Pal, M.: Gadolinium substitution induced defect restructuring in multiferroic BiFeO3: case study by positron annihilation spectroscopy. J. Phys. D: Appl. Phys. 46, 495309 (2013)

  51. Alatalo, M., Kauppinen, H., Saarinen, K., Puska, M., Mäkinen, J., Hautojärvi, P., Nieminen, R.: Identification of vacancy defects in compound semiconductors by core-electron annihilation: Application to InP. Phys. Rev. B 51, 4176 (1995)

    Article  ADS  Google Scholar 

  52. Alatalo, M., Barbiellini, B., Hakala, M., Kauppinen, H., Korhonen, T., Puska, M.J., Saarinen, K., Hautojärvi, P., Nieminen, R.: Theoretical and experimental study of positron annihilation with core electrons in solids. Phys. Rev. B 54, 2397 (1996)

    Article  ADS  Google Scholar 

  53. Asoka-Kumar, P., Alatalo, M., Ghosh, V.J., Kruseman, A.C., Nielsen, B., Lynn, K.G.: Increased elemental specificity of positron annihilation spectra. Phys. Rev. Lett. 77, 2097 (1996)

    Article  ADS  Google Scholar 

  54. Ahmed, S.I., Sanad, M.M.: Maghemite-based anode materials for Li-ion batteries: the role of intentionally incorporated vacancies and cation distribution in electrochemical energy storage. J. Alloys Compd. 861, 157962 (2021)

  55. Somogyváari, Z., Sváb, E., Meszaros, G., Krezhov, K., Nedkov, I., Sajo, I., Bourée, F.: Vacancy ordering in nanosized maghemite from neutron and X-ray powder diffraction. Appl. Phys. A 74, s1077–s1079 (2002)

    Article  ADS  Google Scholar 

  56. Khan, Y., Kneller, E.: Structure and magnetic moment of zinc-substituted γ iron oxide. J. Magn. Magn Mater. 7, 9–11 (1978)

    Article  ADS  Google Scholar 

  57. Smit, J., Wijn, H.P.: Ferrites—Physical Properties of ferrimagnetic oxides in relation to their technical applications. N. V. Philip’s Gloeilampenfabrieken, Eindhoven, Holland. (1965)

  58. Ge, W., Rahman, A., Cheng, H., Zhang, M., Liu, J., Zhang, Z., Ye, B.: Probing the role of cation vacancies on the ferromagnetism of La-doped BiFeO3 ceramics. J. Magn. Magn. Mater. 449, 401–405 (2018)

    Article  ADS  Google Scholar 

  59. Yi, J., Lim, C., Xing, G., Fan, H., Van, L., Huang, S., Yang, K., Huang, X., Qin, X., Wang, B.: Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys. Rev. Lett. 104, 137201 (2010)

Download references

Acknowledgements

The authors would like to thanks Dr. Z. Kargar for his kind help related to positron annihilation measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Morteza Asgarian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgarian, S.M., Shatooti, S. & Mozaffari, M. Investigation of Cation and Cation Vacancy Distributions in the Zinc Substituted Maghemite, Prepared by One Pot Room Temperature Co-precipitation Method. J Supercond Nov Magn 34, 2933–2944 (2021). https://doi.org/10.1007/s10948-021-06014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06014-6

Keywords

Navigation