Skip to main content
Log in

Tribological Studies of NiMnIn and NiMnSn Magnetic Shape Memory Alloys

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ni-Mn-based metamagnetic shape memory alloys (MSMAs) have excellent properties such as magnetic shape memory effect, giant magnetocaloric and barocaloric effects, magneto resistance, and exchange bias effects. These properties introduce them as potential novel materials for technological applications. Therefore, understanding and controlling the wear behavior of NiMn-based MSMAs is an important consideration for mechanical properties. In terms of technological applications, detailed tribological studies clarify the robustness in the harsh environment. In this study, we have performed the tribological behaviors of NiMnX (X = In and Sn) MSMAs. Additionally, the specified alloys are fabricated by two different methods to measure the effects of the fabrication method. The results showed that the wear testing and track depths are affected by fabrication methods, the contribution of X element, and wearing methods. The effect of the load is less significant for reciprocal sliding unlike to pin-on disk. For the pin-on disk, 5 N load presents a clear decrease by means of friction coefficient. Through the experiments, temperature changes from 24.3 to 48.6 °C. Microstructural evaluations highlighted that the alloys fabricated by induction furnace have lower width of wear track. Lastly, the NiMnSn alloy fabricated by using the arc melter comparatively has the widest wear track, 1303 µm.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bachaga, T., Zhang, J., Khitouni, M., Sunol,  J. J.: NiMn-based Heusler magnetic shape memory alloys: a review. Intern. J. Adva. Manufact. Technol. 103(5), 2761–2772, 2019/08/01 (2019).  https://doi.org/10.1007/s00170-019-03534-3

  2. González-Legarreta, L., et al.: Heusler alloy ribbons: structure, martensitic transformation, magnetic transitions, and exchange bias effect. In: Zhukov, A. (ed.) Novel functional magnetic materials: fundamentals and applications, pp. 83–114. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  3. Umetsu, R., Xu, X., Kainuma, R.:  NiMn-based metamagnetic shape memory alloys, Scripta. Mater. 116, 1–6, 04/01 (2016).  https://doi.org/10.1016/j.scriptamat.2016.01.006

  4. Ullakko, K., Huang, J.K., Kantner, C., O’Handley, R.C., Kokorin, V.V.: Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69(13), 1966–1968 (1996). https://doi.org/10.1063/1.117637

    Article  ADS  Google Scholar 

  5. Sutou, Y., et al.: Magnetic and martensitic transformations of NiMnX (X=In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85(19), 4358–4360 (2004). https://doi.org/10.1063/1.1808879

    Article  ADS  Google Scholar 

  6. Lázpita, P., Sasmaz,  M., Cesari, E., Barandiarán, J. M., Gutiérrez, J., Chernenko, V. A.:  Martensitic transformation and magnetic field induced effects in Ni42Co8Mn39Sn11 metamagnetic shape memory alloy. Acta Mater. 109

  7. Planes, A., Mañosa, L.: Ferromagnetic Shape-Memory Alloys. Materials Science Forum 512, 145-152, (2006). https://doi.org/10.4028/www.scientific.net/MSF.512.145

  8. Sokolovskiy, V. V., Zagrebin, M. A., Buchelnikov, V. D.: Novel Achievements in the Research Field of Multifunctional Shape Memory Ni-Mn-In and Ni-Mn-In-Z Heusler Alloys, Materials Science Foundations, vol. 81-82, 38-76 (2015). https://doi.org/10.4028/www.scientific.net/MSFo.81-82.38

  9. Şaşmaz, M., Bayri, A., Aydoğdu Y.: The magnetic behavior and physical characterization of Cu–Mn–Al ferromagnetic shape memory alloy. J. Superconduct. Novel Magnet. 24(1), 757–762, 2011/01/01 (2011).  https://doi.org/10.1007/s10948-010-0934-2

  10. Şaşmaz, M.: The effect of Mn content on thermal and magnetic properties of Mn50-xNi41+xSn9 (x = 0, 2, 4) magnetic shape memory alloys, Süleyman Demirel Univ. J. Nat. Appl. Sci. 23(1)

  11. Bachagha, T., Ren, W., Sunol, J. J., Jing, C.: Microstructure characterization, structure and magnetic properties of Ni–Mn–Sn shape memory alloys. J. Thermal Analysis Calorimet. 2021/02/25 (2021). https://doi.org/10.1007/s10973-021-10625-5

  12. Sasmaz, M., et al.: Structure and magnetic-field ınduced effects in Mn-Ni(Fe)-Sn metamagnetic shape memory alloys. Materials Today: Proceedings. 2

  13. Planes, A. et al.: Magnetocaloric and Shape-Memory Properties in Magnetic Heusler Alloys. Advanced Materials Research, vol. 52, 221-228, (2008). https://doi.org/10.4028/www.scientific.net/AMR.52.221

  14. Lázpita, P., Sasmaz, M., Barandiarán, J. M., Chernenko, V. A.: Effect of Fe doping and magnetic field on martensitic transformation of Mn-Ni(Fe)-Sn metamagnetic shape memory alloys. Acta Materialia, vol. 155, 95-103, 2018/08/15/ (2018). https://doi.org/10.1016/j.actamat.2018.05.052

  15. Turabi, A. S., Lázpita, P., Sasmaz, M., Karaca, H. E., Chernenko, V. A.:  Magnetic and conventional shape memory behavior of Mn–Ni–Sn and Mn–Ni–Sn(Fe) alloys. J.  Phys. D: Appl. Phys. 49(20), 205002. 2016/04/18 (2016). https://doi.org/10.1088/0022-3727/49/20/205002

  16. Şaşmaz, M.: Metamagnetic transition and magnetocaloric properties of Ni45Mn42In13 Heusler alloy. Phase Transitions. 94(5), 289–297. 2021/05/04. (2021). https://doi.org/10.1080/01411594.2021.1931691

  17. Wu, S., et al.: Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold, (in eng). J Biomed Mater Res A 101(9), 2586–2601 (2013). https://doi.org/10.1002/jbm.a.34568

    Article  Google Scholar 

  18. Mokashi, M. S., Dhanal, S. V.: Tribological studies of NiMnAl and NiMnSn magnetic shape memory alloys. Intern. J. Current. Eng. Technol. 7(3), 943–945 (2017)

  19. Yan L., Liu, Y.: Wear behavior of austenitic NiTi shape memory alloy. Shape Memory  Superelastic1(1), 58–68 (2015). https://doi.org/10.1007/s40830-015-0008-1

  20. Yan, L., Liu, Y.: Effect of temperature on the wear behavior of NiTi shape memory alloy. J. Mater. Res. 30(2), 186–196 (2015). https://doi.org/10.1557/jmr.2014.381

    Article  ADS  Google Scholar 

  21. Chowdhurya, S.K.R., Malhotra, K., Padmawar, H.: Effect of contact temperature rise during sliding on the wear resistance of TiNi shape memory alloys. Tribology in Industry 35(1), 84–94 (2013)

    Google Scholar 

  22. Tillmann, W., Momeni, S.: Tribological performance of near equiatomic and Ti-rich NiTi shape memory alloy thin films. Acta Mater. 92

  23. Yang, R., et al.: Tribologically induced amorphization in the subsurface of aged Ni-rich TiNi alloy during dry sliding. Intermetallics 113, 106574 (2019). https://doi.org/10.1016/j.intermet.2019.106574

  24. Figueroa, C. G., Garcia-Castillo, F. N., Jacobo, V. H.,  Cortés-Pérez, J., Schouwenaars, R.: Microstructural and superficial modification in a Cu-Al-Be shape memory alloy due to superficial severe plastic deformation under sliding wear conditions. IOP Conf. Series: Mater. Sci. Eng. 194, 012011 (2017). https://doi.org/10.1088/1757-899x/194/1/012011

  25. Sharma, P.: NiTi shape memory alloy: physical and tribological characterization. J. Mech. Behav. Mater. 27(1–2) (2018) https://doi.org/10.1515/jmbm-2018-0009

  26. Wang, H., Ren, K., Xie, J., Zhang, C., Tang, W.: Friction and wear behavior of single-phase high-entropy alloy FeCoNiCrMn under MoS2-oil lubrication. Industrial Lubrication and Tribology 72(5), 665–672 (2020). https://doi.org/10.1108/ilt-08-2019-0303

    Article  Google Scholar 

  27. Şaşmaz, S.: The effect of X element on magnetic properties of NiMnX11 (X = In, Sn) Heusler alloys. J. Superconduct. Novel Magnet, 33(10), 3059–3064. 2020/10/01 (2020). https://doi.org/10.1007/s10948-020-05552-9

  28. Vahdettin, K., ÇAY, V. V.: Investigation of wear behavior of Ti6Al4V/B4C composites produced by powder metallurgy. Euro. J. Techn. 10(2), 444–453, (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merivan Şaşmaz.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The tribological behaviors of NiMnX (X = In and Sn) metamagnetic shape memory alloys which are rarely studied and important issue for their potential of technological applications.

• Microstructural evaluations are highlighted that the alloys fabricated by induction furnace have lower width of the wear track.

• NiMnIn has more resistivity against wearing than NiMnSn.

• Fabrication of the alloys, whether induction furnace or arc melter, changes wear behavior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şaşmaz, M., Koç, V. & Güldal, S. Tribological Studies of NiMnIn and NiMnSn Magnetic Shape Memory Alloys. J Supercond Nov Magn 34, 2923–2931 (2021). https://doi.org/10.1007/s10948-021-06006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06006-6

Keywords

Navigation